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ABSTRACT   Secondary metabolites biosynthesis regulation study of herbal plants 

plays a significant role in the discovery of phytochemical compounds with a wide range of 

uses. These phytochemical compounds are important nature-derived drugs such as antibiotics, 

agrochemicals substitutes (allelopathy), pigments, and medicinal immuno-suppressor. 

Generally, there is a firm scheme for regulating secondary metabolites based on their 

components, function and synthesis: alkaloids, enzyme, fatty acid, phenolic, polyketides, 

polypeptides, steroids, and terpenoids. Therefore, with the increasing in economic importance 

of these valuable compounds has led to a great interest in secondary metabolism, mainly the 

possibility of modifying and regulating the production of metabolites by means of 

biotechnological and agricultural practice. This review presents information about the 

production regulation of bioactive compounds under various stress conditions, particularly on 

abiotic influence such as water supply and fertilizer application that could be included in G. 

procumbens production systems. Brief analysis was done by reviewing various collected 

works and material from articles in related issues. Therefore, it will permit quantitative 

comparison of studies to address intended questions based on procedures, study systems, 

locations and scale of used.  
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ABSTRAK   Kajian berkenaan peraturan biosintesis metabolit sekunder dalam 

tumbuh-tumbuhan herba memainkan peranan yang signifikan dalam penemuan sebatian-

sebatian fitokimia dengan pelbagai kegunaan. Sebatian-sebatian ini adalah bahan ubatan 

penting alam semula jadi yang diperolehi seperti antibiotik, pengganti agrokimia (alelopati), 

pigmen, dan ubatan imun-penindas. Secara umumnya, terdapat satu bentuk sistem yang boleh 

mengawalatur penghasilan dan pengeluaran metabolit sekunder ini berdasarkan komponen, 

fungsi dan sintesis: alkaloid, enzim, asid lemak, fenolik, poliketide, polipeptide, steroid, dan 

terpenoid. Oleh itu, dengan peningkatan dalam kepentingan ekonomi sebatian berharga ini 

telah membawa kepada minat yang besar dalam penghasilan metabolit sekunder, terutamanya 

aspek mengubahsuai dan mengawalatur pengeluaran metabolit melalui amalan bioteknologi 

dan pertanian. Artikel ini membentangkan maklumat mengenai mekanisme pengeluaran 

sebatian bioaktif dalam pelbagai keadaan dan pengaruh, terutamanya mengenai pengaruh 

abiotik seperti bekalan air dan penggunaan baja yang boleh digunapakai dalam sistem 

pengeluaran G. procumbens. Analisis ringkas telah dilakukan dengan pengumpulan bahan 

dan material daripada artikel dalam isu-isu yang berkaitan. Oleh itu, artikel ini boleh 
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digunakan dalam melakukan perbandingan kajian kuantitatif yang melibatkan persoalan yang 

sama seperti prosedur, sistem kajian, lokasi dan skala yang digunakan. 

 
 

 

INTRODUCTION 

 

Gynura procumbens (Lour.) Merr. 

(family Asteraceae) (G. procumbens) was 

largely distributed from Africa to Australia 

and South East Asia. To date, the highest 

diversity was found in Southeast Asia 

(SEA) including Indonesia, Malaysia and 

Thailand for medicinal purposes (Saiman, 

Mustafa, Schulte, Verpoorte, & Choi, 

2012; Sekar et al., 2014). Generally, G. 

procumbens was described as an evergreen 

shrub or perennial herbs with a purple 

fleshy stem and tint. The plant was 

classified as tropical herbaceous medicinal 

plant and able to grow approximately at 

10-25 cm tall (Bhore & Vaishana, 2010; 

Tan, Chan, Pusparajah, Lee, & Goh, 

2016).   

 

Typically, the plant was used in 

various health ailments such as blood 

hypertension reduction, cancer (anti-

carcinogenic), constipation, diabetes 

mellitus, eruptive fevers, kidney disease, 

migraines, rash, and urinary infection 

(Adnan & Othman, 2012; Arifullah, 

Vikram, Chiruvella, Shaik, & Abdullah 

Ripain, 2014; Duñg & Loi, 1991; Hassan, 

Yam, Ahmad, & Yusof, 2010; Hoe, Lee, 

Mok, Kamaruddin, & Lam, 2011; 

Jarikasem et al., 2013; Kaewseejan, 

Puangpronpitag, & Nakornriab, 2012; 

Mou & Dash, 2016; Rahman & Al Asad, 

2013; Shwter et al., 2014). The plant’s 

benefits have also been supported by the 

reports of isolation and identification of 

numerous possible bioactive compounds 

such as flavonoid, glycoside, phenolic, 

saponins, sterol, tannins, and terpenoids 

from the leaf extract (Afandi, 2015; 

Altemimi, Lakhssassi, Baharlouei, 

Watson, & Lightfoot, 2017; Arulselvan et 

al., 2014; Hew, Khoo, & Gam, 2013; 

Iskander, Song, Coupar, & Jiratchariyakul, 

2002; Liew, Stanbridge, Yusoff, & Shafee, 

2012).  

 

Despite greater medicinal value, 

however, its phytochemical properties and 

biosynthesis mechanisms specifically on 

G. procumbens have not been well studied 

until recently, except, on other Gynura 

species and variety in general (Dewick, 

2002; Jimenez-Garcia et al., 2013; Julsing, 

Koulman, Woerdenbag, Quax, & Kayser, 

2006; Ramawat, Dass, & Mathur, 2009; 

Xue & Zhang, 2017). 

 

Due to the tradition, current 

application and potential future benefits of 

alternative medicine, there should be a 

study to be conducted to investigate the 

regulation of phytochemical production or 

secondary metabolites synthesis of G. 

procumbens to optimize the yield and 

mass of the plant’s active compounds.  

 

Therefore, alternatives can be 

delivered in two different scales, which is 

either in the laboratory or in the glasshouse 

work. Working in the laboratory will be 

translated into plant biotechnology by 

means of in vitro cell or organ cultures and 

genetic transformation (Nurisa, Kristanti, 

& Manuhara, 2017; Saiman et al., 2012). 
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Meanwhile, working in the glasshouse will 

be translated into agricultural means using 

micro environment or micro climate and 

abiotic elements (Jamaludin, Abd Aziz, 

Ahmad, & Jaafar, 2015). Indeed, both 

approaches are potentially significant and 

could be used to optimize the synthesis, 

accumulation and production of the 

desired metabolites in G. procumbens.  

 

Abiotic control such as carbon 

dioxide (CO2) elevation, light intensity, 

nitrogen (N) and potassium (K) 

fertilization, and water supply under 

glasshouse condition becomes popular 

approaches in agricultural sector since it 

provides and exhibits direct fast-growing 

material, denotes a simple and easy 

technique to monitor. These were reported 

by Astuti, Rogomulyo, & Muhartini 

(2011); Dunford & Vazquez (2005); 

Ghasemzadeh, Nasiri, Jaafar, Baghdadi, & 

Ahmad (2014); Ibrahim & Jaafar (2012); 

Ibrahim, Jaafar, Karimi, & Ghasemzadeh 

(2012, 2013, 2014); Ibrahim, Jaafar, 

Rahmat, & Rahman (2011); Jaafar, 

Ibrahim, & Fakri (2012); Jamaludin et al., 

(2015); Pradnyawan, Mudyantini, & 

Marsusi (2005).  

 

Therefore, an abiotic control under 

glasshouse condition could work as a 

preferable system in conducting study of 

regulation and effects of certain elements 

in G. procumbens secondary metabolites 

synthesis. In view of that, a brief review 

has been performed on various herbal 

medicinal plants phytochemical’s 

production and their potential application 

in G. procumbens.  The reviews are focus 

on: G. procumbens plants; the pathway in 

which the biosynthesis is involved; and, 

also the acting mechanism of selected 

abiotic elements under glasshouse 

condition in regulating secondary 

metabolite synthesis.  

 

This review not only provides 

researchers with the information pertaining 

to G. procumbens plants, but also might be 

useful to other herbal medicinal plants. 

The papers reviewed in this article are 

selected from various journals due to their 

reliable reputation.  

 

 

MANIFESTATION OF SECONDARY 

METABOLITES 

 

The development of herbal 

medicinal plants for potential bioactive 

compounds production was manifested by 

research and agronomic management 

challenges considerations (Jeong & Kim, 

2015). Numbers of compounds from 

various plant parts such as flower, fruits, 

leaves, roots, stem, and tuber have been 

reported. These metabolites include 

diverse types of economically important 

compounds, including; allelopathy, 

elicitors, enzyme, immunomodulatory 

agents, pheromones, pigments, and toxins 

in animals, humans and plants (June et al., 

2012; Kaewseejan et al., 2012; J. E. Li, 

Wang, Zheng, & Li, 2017). 

 

Since the production of these 

products requires a greater mass of natural 

ingredients, therefore the demand for 

alternative bases derived primarily from 

quality medicinal plant production is 

increasing significantly (Briskin, 2000). 

On top of that, the importance of knowing 

the effects of nutrient level on the 

plantation and identifying the mechanism 

of regulation pathways in plant’s 
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secondary metabolite production for 

producing better and sustainable yields of 

the plants is timely (Boroomand & Grouh, 

2012; Mohamad Bukhori, Jaafar, & 

Ghasemzadeh, 2015). 

 

 

THE POTENTIAL OF GLASSHOUSE 

CONDITION STUDY 

 

To cope with the target of 

enhancing and sustaining the plant yield 

and important secondary metabolite 

production in G. procumbens, is to 

domesticate the study under glasshouse 

condition. Nevertheless, there has no 

comprehensive documentation on standard 

protocol or practice for water supply and 

fertilization or the best harvest time for 

better yield and higher production of 

secondary metabolites in G. procumbens 

except on Gynura bicolor (Table 1). 

 

Table 1: Compound biosynthesis under different parameters in Gynura bicolor.  

Variety Study Parameter Report 

Gynura bicolor Alteration of polyphenol biosynthesis in leaves 

when induced by infrared (IR) irradiation. 

Fukuoka, Suzuki, 

Minamide, & 

Hamada, 2014 

Gynura bicolor Alteration of anthocyanin and non-flavonoid 

polyphenol biosynthesis in leaves when exposed to 

different light quantum. 

Fukuoka et al., 2014 

Gynura bicolor Induction of anthocyanin accumulation in cultured 

roots by methyl jasmonate. 

Shimizu, Maeda, 

Kato, & 

Shimomura, 2011 

 

 

The concentration of secondary 

metabolites such as total flavonoids and 

phenolic compound are very much 

influenced by agronomical practices, 

especially water supply, N and K 

fertilization (Jaafar et al., 2012). With 

regards to carbon: nutrient balance (CNB) 

hypothesis, whenever N or K resource 

availability in the growth media is 

decreasing, the low resource would limit 

the plant growth more than the 

photosynthesis; under this situation plants 

will allocate the extra carbon (C) which 

cannot be used for growth to the 

production of carbon-based secondary 

metabolites (CBSM) (Fonseca, Rushing, 

Rajapakse, Thomas, & Riley, 2006; 

Marchese, Ferreira, Rehder, & Rodrigues, 

2010).  

 

This information is vital for optimizing the 

production of G. procumbens under 

glasshouse condition, which data can also 

be simulated for production under different 

growing conditions. Therefore, a 

glasshouse study could be conducted 

primarily to understand the production of 

plant secondary metabolites, particularly 

the lead compounds activities, under 

different water level supply, N and K 

fertilization regimes; and to determine the 

right harvesting time for optimum 

production of the secondary metabolites.  
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STIMULATION OF PLANT 

SECONDARY METABOLITES 

PRODUCTION 

 

Plants possess metabolic pathways 

leading to a wide arrays of compound 

products which commonly effectively 

reacting to stress environment imposed by 

biotic and abiotic factors (Heydarizadeh, 

2016; Kennelly, O’Mara, Rivard, Miller, 

& Smith, 2012). These pathways regularly 

started from essential primary metabolism 

pathways with initial gene duplication 

which sometimes leads to altered 

transcriptional and translational genes of 

new functions and diversified roles in new 

pathways (Jimenez-Garcia et al., 2013; 

Julsing et al., 2006). The occurrence is a 

basic part of plants developmental 

program and marks the onset of 

developmental stages (Hunt, 2003).  

 

On a molecular basis, a determined 

spatial and temporal control of gene 

expression warrants the correct synthesis 

and accumulation pattern of various 

compounds by featuring the ontogeny and 

circadian clock-controlled gene expression 

of the regulatory transcription factors for 

compound production in respective 

developmental stages of the plants (Ruffel, 

Krouk, & Coruzzi, 2010). 

On the other hands, plant 

secondary metabolites are denoted to have 

primary function in interacting with 

environment for defense and adaptation 

(Mazid, Khan, & Mohammad, 2011). For 

example, in higher plants, a wide range of 

secondary metabolites are mainly 

synthesized from primary metabolites 

(carbohydrates, lipids, nucleic acids, and 

proteins). They are required in plant 

defense reactivity against herbivores and 

pathogens by conferring protection against 

environmental stresses (alkalinity, disease 

infection, drought, light, nutrients, salinity, 

and temperature) (Michalak, 2006).  On 

that note, we are beginning to understand 

their essential role in plant growth and 

development. 

 

On top of that, the accumulation or 

secretion of these metabolites is also 

subjected to various stresses factor 

including elicitors or signal molecules 

(Ruffel et al., 2010), where, the production 

of the compounds is often low (less than 

1% dry weight) and depends greatly on the 

physiological and developmental stage of 

the plant (Jaafar et al., 2012).  

 

To date, elicitor and precursor have 

been widely used to increase the 

production as well as to induce de novo 

synthesis of secondary metabolites by 

means of in vitro plant cell cultures (Tu et 

al., 2016). However, glasshouse condition 

seems to work best for domesticating the 

study of abiotic influence on secondary 

metabolites production since the 

agricultural cultivation and natural habitat 

have shown similar responses to 

manipulations (Massad, Fincher, 

Smilanich, & Dyer, 2011).   

 

For instance, stresses in nutrient 

have a marked effect on phenolic levels in 

plant tissues (Michalak, 2006). 

Meanwhile, exposure to drought has leads 

to cellular dehydration, which eventually 

causes osmotic stress and removal of water 

from the cytoplasm to vacuoles. Apart 

from that, plants under water stress also 

exhibit increased accumulation of abscisic 

acid (ABA) which triggers changes in 
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phenolics and terpenoid (Z. Li, 2002; 

Marchese et al., 2010).   

 

Therefore, these will implicate 

certain levels of genes expression that 

shown a response and reactive to nutrient, 

temperature and osmotic stress, where, 

deficiencies in water supply, incorrect N 

and K fertilization directly affect the 

accumulation of phenylpropanoids and 

lignification and also increasing phenolic 

concentrations as well as increasing the 3-

fold in anthocyanidins level and 

simultaneously doubling of quercetin-3-O-

glucoside and regulate anthocyanin 

production in plants (Ghasemzadeh et al., 

2014).  

 

 

BIOSYNTHESIS OF PHENOLIC 

COMPOUNDS 

 

A phenolic is one of the most 

important phytochemical groups in G. 

procumbens. This compound is 

characterized by at least one aromatic ring 

(C6) bearing one or more hydroxyl groups 

and mainly synthesized from cinnamic 

acid which is formed from phenylalanine 

by the action of L-phenylalanine 

ammonia-lyase (PAL), the branch point 

enzyme between shikimate pathway 

(primary) and phenylpropanoid pathway 

(secondary) metabolism (Figure 1; 4CL, 4-

coumaroyl:CoA-ligase; ANS, 

anthocyanidin synthase; C4H, cinnamate-

4-hydroxylase; CHI, chalcone isomerase; 

CHS, chalcone synthase; DFR, 

dihydroflavonol reductase; F3H, flavanone 

3-hydroxylase; FLS, flavonol synthase; 

FS, flavone synthase; and PAL, 

phenylalanine ammonia-lyase) (Cheynier, 

Comte, Davies, Lattanzio, & Martens, 

2013).  

 

In fact, PAL diverts phenylalanine 

from protein synthesis (in primary 

metabolism) towards the production of 

trans cinnamic acid and other phenolic 

compounds. PAL is mainly located in the 

epidermal cells. Its activity is very high at 

the start of plant’s development, 

maximized during the plant’s growth 

phase; then started to decrease and 

beginning to low during maturation 

(Ghasemzadeh et al., 2014).  

 

These vital reports at least would 

facilitate the study objective in which the 

practical or efficient water supply, 

fertilization level and the best harvest time 

for better yield and high production of 

secondary metabolites in G. procumbens 

to be noted.   
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Figure 1: The schematic of major branch of (poly)phenol biosynthesis pathways. (Figure by 

Cheynier et al., 2013).  

 

 

This primary pathway also leads to 

the three aromatic amino acids including 

L-phenylalanine, L-tyrosine, and L-

tryptophan (Figure 2; PEP, 

phosphoenolpyruvate; and E4P, erythrose 

4-phosphate). 
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Figure 2: The schematic of primary pathway of the three aromatic amino acids synthesis. 

(Figure by Herrmann, 1995). 

 

In plant cells, initially, chloroplasts 

will fix carbon dioxide (CO2) through 

Calvin cycle into glyceraldehyde-3-

phosphate (G3P), which eventually 

transformed and accumulated as 

carbohydrates storage followed by 

degradation whenever requires either by 

glycolysis (main products: G3P, 

phosphoenolpyruvate (PEP) and pyruvate) 

or via the oxidative pentose phosphate 

(OPP) pathway (main products: erythrose-

4-phosphate (E4P) and G3P) into more 

simple molecules (Figure 3; DHQ, 3-

dehydroquinic acid; DHS, 3-

dehydroshikimic acid; E4P, erythrose-4-

phosphate; G3P, glyceraldehyde-3-

phosphate; and PEP, 

phosphoenolpyruvate) (Ossipov, 

Salminen, Ossipova, Haukioja, & Pihlaja, 

2003; Shitan, 2016).  

Initially, the first branch of the 

pathway located between the acetate-

malonate and shikimate pathways. Both 

pathways are essential for the biosynthesis 

of phosphatidic acids (PAs), meanwhile 

ellagitannins (ETs) only rely solely on the 

shikimate pathway. In a condition where if 

significant levels of glycolytic PEP are 

directed into the shikimate pathway 

(together with E4P), therefore, the 

production of pyruvate for the needs of 

acetate-malonate pathway is significantly 

reduced. This has resulted direct negative 

effects on PA biosynthesis, since they 

would need malonyl-CoA as one of their 

building blocks. However, most of plant’s 

tannins rely on the efficient function of the 

shikimate pathway (Figure 3) (Ossipov et 

al., 2003). 
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Next, the second major branch 

point located at 3-dehydroshikimic acid 

(DHS). This is the main precursor for the 

gallic acid synthesis, the primary building 

block of all HC-toxin synthetase (HTs). 

Efficient production of gallic acid, 

however, will be negatively affects the 

synthesis of shikimic acid and its products: 

caffeic and coumaric acid derivatives, 

flavonoids, and PAs.  

 

Finally, the hydrolysable tannin 

pathway contains the third major branch 

point at pentagalloyl glucose, which is the 

precursor for both gallotannins (GTs) and 

ETs (Figure 3) (Ossipov et al., 2003).
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Figure 3: The schematic of general phenolic biosynthesis pathway. (Figure by Ossipov et al., 

2003). 
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The significance of this pathway to 

be considered when applying 

environmental stress parameter in the 

study was supported by the report, which, 

in normal plant growth conditions, 20% of 

C fixed by plants will flows through this 

pathway (Figure 4) (Michalak, 2006). 

Hence, determining the proper growth of 

plants will direct the right direction of C 

flow into the correct biosynthesis 

pathways of flavonoid, phenolics and 

tannins in G. procumbens. 

  

Figure 4: The schematic of the main groups of phenolic compounds biosynthesis pathways 

(Figure by Michalak, 2006). 

 

On top of that, phenols are also 

divided into numerous different groups, 

determined by the number of constitutive 

C atoms in concurrence with the structure 

of the basic phenolic skeleton such as 

simple phenol, benzoquinones (C6); 

phenolic acid (C6-C1); acetophenone, 

phenylacetic acid (C6-C2); 

hydroxycinnamic acid, coumarin, 

phenylpropanes, chromones (C6-C3); 

naphthoquinones (C6-C4); xanthones (C6-

C1-C6); stilbenes, anthraquinones (C6-C2-

C6); flavonoids, isoflavonoids, 

neoflavonoids (C6-C3-C6); bi-, 

triflavonoids ((C6-C3-C6)2,3); lignans, 

neolignans ((C6-C3)2); lignins ((C6-C3)n); 

catechol melanins ((C6)n); and condensed 

tannins ((C6-C3-C6)n) (Lattanzio, 2013).  

 

In addition, the catalysis and an 

enhancement of phenylpropanoid 

metabolism as well as the observation of 

other compounds synthesis including 

phenolic can be observed under various 

environmental stress conditions and 

factors as in the following example of 

cases (Aminifard, Aroiee, Nemati, Azizi, 

& Jaafar, 2012; Ghasemzadeh & 
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Ghasemzadeh, 2011; Ghasemzadeh et al., 

2014; Ibrahim et al., 2013, 2014, 2011; 

Jaafar et al., 2012; Michalak, 2006; 

Muradoglu et al., 2015; Smith, Wu, & 

Green, 1993) (Table 2);  

 

 

Table 2: The effects in compound biosynthesis under various environmental influences 

(Boroomand & Grouh, 2012; Cheynier et al., 2013; Ferreyra, Rius, & Casati, 2012; Ibrahim 

et al., 2013; Jaafar et al., 2012; Texeira, de Carvalho, Zaidan, & Klein, 1997). 

 

Unfavorable environment or 

stress conditions 
Compound synthesis 

Injured and/or infected plants, or under low 

temperatures and nutrient supply. 

Induction of isoflavones and some other 

flavonoids. 

Prevention of UV-B penetration into the deeper 

tissues of the plant. 

Accumulation of UV-absorbing flavonoids and 

other phenolic compounds in vacuoles of 

epidermal cells. 

Activation of root nodule bacterial genes. Secretion of flavonoids from roots of legumina. 

Response of wheat to Ni toxicity. Induction of phenolic. 

Response of maize to Al. Induction of phenolic. 

Exposure of Phaseolus vulgaris to Cd
2+

. Accumulation of soluble and insoluble phenolic. 

Cu2SO4 sprayed to Phyllantus tenellus leaves. Induction of phenolic more than the control 

plants. 

Fulvic acids effect on fruit quality of Capsicum 

annuum.  

Fruit’s antioxidant activity, capsaicin, 

carbohydrate, carotenoids, and total phenolic 

contents were influenced, but ascorbic acid and 

total flavonoid contents were not affected 

significantly.  

Toxicities of Cd in strawberry cv. 

Camarosa roots and leaves.  

Affect the chlorophyll content and decreased 

nearly 30% of plant growth. 

Enrichment of CO2 on the nutritional quality of 

Zingiber officinale.  

 

 

Increase level of CO2 from ambient to elevated 

resulted in amino acids, cyanide, fructose, 

glucose, phytic acid, sucrose, tannin, and total 

carbohydrate content to increase; and reduction 

of total protein content in the leaf and rhizome. 

CO2 and light intensity impact on Labisia 

pumila Benth. 

Influence the production of chlorophyll, 

malondialdehyde, and sugar content by the 

interactions between CO2 and irradiance. 

Organic and inorganic fertilizers impact on 

Labisia pumila Benth 

Enhance the production of ascorbic acid, 

flavonoids, gluthathione, saponin, and total 

phenolics content by organic fertilizer compared 

to the use of inorganic fertilizer.   

Changes in the production of primary and 

secondary metabolites in Orthosiphon 

stamineus Benth induced by ABA. 

Influence the production of antioxidant activity, 

PAL activity, LOX inhibitory activity, and 

soluble sugars by; 

i. Enhance the production of flavonoids, 
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H2O2, LOX inhibitory activity, O2
−
, 

PAL activity, sucrose, and total 

phenolics. 

ii. Increase the antioxidant capabilities 

(DPPH and ORAC).  

iii. Increase the production of antioxidant 

enzymes (APX, CAT, and SOD).   

iv. Reduce the net photosynthesis and 

stomatal conductance under high 

application rates of ABA.  

CO2 enrichment and foliar application of 

salicylic acid effect on ginger. 

Increase the production of anthocyanin, 

apigenin, fisetin, morin, myricetin, naringenin, 

and rutin contents in leaves.  

Foliar application of salicylic acid effect on 

Zingiber officinale. 

Induce the synthesis of anthocyanin and fisetin, 

enhance the chalcone synthase (enzyme activity 

involving in flavonoid synthesis) and increase 

the protein activity. 

Soil field water capacity impacts on secondary 

metabolites of Labisia pumila Benth.  

As net photosynthesis occurs, the apparent 

quantum yield and chlorophyll content will be 

down-regulated under high water stress; 

therefore, the production of anthocyanin, 

flavonoids, and total phenolics will be up-

regulated implying the imposition of high water 

stress. 

N2 fertilization effects on synthesis of primary 

and secondary metabolites in Labisia pumila. 

Enhance PAL activity, reduce the production of 

soluble protein under low N2 fertilization 

indicate more resources of amino acid phenyl 

alanine under low N2  content stimulate the 

production of CBSM. This was manifested by 

high CN ratio in plants. 

 

 

Environmental factors such as 

abiotic stresses will stimulate C fluxes 

from the primary to the secondary 

metabolic pathways. The event therefore 

will catalyze a shift of the available 

resources in favor of the synthesis of 

secondary products (Hill, Germino, & 

Alongi, 2011). In plants, normally they 

have limited resources to support their 

physiological processes; therefore, all 

requirements cannot be met 

simultaneously and resulted in more C will 

be diverted from growth toward secondary 

metabolism when plant growth is restricted 

by the physiological and/or ecological 

constraint as reported in the role of 

phenylalanine may shift from initiating 

protein formation to enhancing phenolic 

synthesis upon changes in water stress 

(Romagni, 2009).  

 

An interesting link presented 

between primary and secondary 

metabolism has been proposed by 

Lattanzio (2013), which connects the 

accumulation of stress metabolite proline 
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with the energy transfer toward 

phenylpropanoid biosynthesis through the 

oxidative pentose phosphate (OPP) 

pathway (Figure 5). In most plants, free 

proline will accumulate in response to the 

imposition of various abiotic stresses 

factors such as atmospheric pollution, 

heavy metal toxicity, high or low 

temperature, nutrient deficiency, pathogen 

infection, salinization, water deprivation, 

and ultraviolet (UV) irradiation (Caretto, 

Linsalata, Colella, Mita, & Lattanzio, 

2015; Rahimi, Sayadi, Dashti, & Tajabadi, 

2013).  

 

Pertaining to this connection, it has 

also suggested that the value of stress-

induced proline accumulation may be 

mediated mainly through the effects of its 

synthesis and degradation on the cellular 

metabolism’s level. As proline synthesis is 

accompanied by the oxidation of 

nicotinamide adenine dinucleotide 

phosphate (NADPH), meanwhile, an 

increase in NADP
+
/NADPH ratio is to be 

expected to enhance the activity of the 

OPP pathway providing precursors for the 

phenolic biosynthesis through the shikimic 

acid pathway. The alternating oxidation of 

NADPH by proline synthesis together with 

the reduction of NADP
+
 by the two 

oxidative steps of the OPP pathway has 

serve to link both pathways and thus 

facilitate the continuation of high rates of 

proline synthesis during any stress 

exposure and lead to a simultaneous 

accumulation of phenolic compounds 

(Lattanzio, 2013). 

 

These dynamic reports would 

apply best in G. \procumbens in which 

while the study is targeting to up-regulate 

the synthesis of valuable compounds 

whilst maintaining the growth of the plant, 

since the idea of manipulating the 

physiological and/or ecological constraint 

are adapted in the plantation. Primary and 

secondary metabolisms are strongly 

interconnected (Tugizimana, Piater, & 

Dubery, 2013). Sufficient nutrient 

resources such as N, phosphorus (P), K 

and water are required to support plant’s 

physiological processes; and hence, the 

requirements can be met simultaneously, 

and C will be distributed evenly for growth 

and secondary metabolism once plant 

growth is not restricted by any 

physiological and/or ecological constraint 

(Fraser, Silk, & Rost, 1990; Zheng, 2009). 
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Figure 5: The schematic of oxidative pentose phosphate, phenylpropanoid, and proline redox 

cycle relationship pathway (Figure by Caretto, Linsalata, Colella, Mita, & Lattanzio, 2015). 

 

Apart from that, the chalcone 

synthase enzyme (CHS) was also being 

discovered and reported to play as a key 

enzyme in flavonoid metabolism in plant 

cells (cortex and epidermal cells in the tip 

and elongation zone of the root), consistent 

with the accumulation of flavonoid end 

products at these sites (Ramawat et al., 

2009). Also, has been reported that the 

CHS activity was significantly influenced 

by the plant age, where the lowest and 

highest activity levels of CHS were 

recorded in one and 6-month-old buds 

respectively. Apart from that, the CHS 

enzyme activity was also enhanced in one 

to 6-month-old seedlings in the leaves and 

buds respectively (Ghasemzadeh et al., 

2014). 

 

In contrast, with the increasing 

growth period from 6-month-old to one 

year, CHS enzyme activity was decreased 
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significantly. The mechanism of this 

enzyme effect on flavonoid synthesis has 

reflected the initial reaction of PAL, in 

which the branch point enzyme between 

shikimate and phenylpropanoid pathway 

for diverting phenylalanine from primary 

metabolism to the production of trans 

cinnamic acid and other phenolic 

compounds, where its activity is very high 

at the start of development and beginning 

to decrease up to maturation 

(Ghasemzadeh et al., 2014). 

 

The CHS might always present in 

the plant cells and will be activated at the 

protein level. Figure 3 and 4 has shown the 

flavonoids were derived from 4-

coumaroyl-CoA and malonyl-CoA in the 

presence of CHS enzyme. This indicates 

that the CHS is an important enzyme for 

flavonoid biosynthesis. Therefore, CHS 

could be considered as a biochemical 

marker in evaluating the dynamic changes 

in flavonoid synthesis in plants 

(Ghasemzadeh & Ghasemzadeh, 2011; 

Ghasemzadeh et al., 2014).  

 

Above all, most of the compound’s 

C skeleton is derived mainly from 

carbohydrates synthesized by 

photosynthesis. The synthesis of numerous 

classes of secondary metabolites from 

primary metabolites is presented in Figure 

6; DOX/MEP pathway, non-mevalonate 

pathway or deoxy-xylulose 5-

phosphate/methyl-derithrol 4-phosphate 

pathway. Most secondary metabolites are 

synthesized through the two principal 

biosynthetic pathways: shikimic acid 

pathway will produce a group of aromatic 

amino acids, which in turn are converted 

into various compounds such as phenolics 

(lignins, quinones, and tannins) and 

alkaloids, and acetyl-CoA mevalonic acid 

pathway will lead to a vast array of 

terpenoids (Lattanzio, 2013).
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Figure 6: The schematic of principle biosynthetic pathways leading to secondary metabolites 

synthesis. (Figure by Ramawat et al., 2009). 

 

 

 

SYNERGISM OF WATER, 

NITROGEN AND POTASSIUM IN 

SECONDARY METABOLITES 

BIOSYNTHESIS REGULATION OF 

PLANTS GROWN UNDER 

GLASSHOUSE CONDITION: 

APPLICATION IN Gynura procumbens 

 

Manipulating water availability in 

plant propagation, acclimatization and 

cultivation system could result in diverse 

phytochemical profiles. Water stress 

increases the production of jasmonic acid 

and ABA, which results in stomata 

closure, and accumulation of sesquiterpene 

and tannins (Z. Li, 2002). Plants growing 

under reduced-water availability also had 

lower phenolic contents compared to 

plants which received continuous 

irrigation (Espírito-santo, Fernandes, 

Allain, & Reis, 1999; Szakiel, Pa̧czkowski, 

& Henry, 2011). 

 

Meanwhile, in an excessive N 

supply beyond the need of plant 

requirement could be presumably shifted 

into phenolics biosynthesis based on a 

carbon-use efficiency theory (Hill et al., 

2011; Schuppler, He, John, & Munns, 
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1998), i.e. carbon accumulated/carbon 

depleted was significantly improved when 

plants had a combination of external 

sugars available compared with plants 

grown in a single hexose alone 

(Armengaud et al., 2009). Plants will avoid 

complete down-regulation of 

photosynthesis even though a large excess 

of external C fluxed through their cells. 

However, when N supply is taken deficient 

the optimal level, it will cause 

scleromorphism, stunting, and increased 

root to shoot ratio (RSR) (Hanudin, 

Wismarini, Hertiani, & Sunarminto, 2012; 

Walker, Burns, & Moorby, 2001). 

 

As for K, the nutrient has least 

important in the chemical structure of the 

plant. The availability and movement of 

the nutrient in the plant will allow it to 

influence almost every aspect of plant 

growth (Mudau, Soundy, & du Toit, 

2005). Potassium activates enzymes, 

controls plant turgidity, encourages root 

growth, helps in protein formation, 

strengthens stalks, transports sugar and 

starch, and involved in many other plant 

functions to provide regulatory roles in 

plants development and survival (Donald 

L. Armstrong, 1998; Gaj, Górski, & 

Przybył, 2012).   

 

Ultimately, an important aspect to 

take into accounts in inducing plants to 

regulate water availability as well as 

varying nutrients supply is the potential of 

synergistic or antagonistic effect of 

multiple stress-producing environments 

such as the advantage of a water stress in 

increasing secondary metabolites could be 

by accompanied with undesired effects; a 

reduction in yield (Mbagwu & Osuigwe, 

1985). 

RATIONALE OF STUDY 

 

Phenols are mainly synthesized 

through the shikimate pathway. 

Meanwhile, the shikimate pathway is a 

major biosynthetic route for both primary 

and secondary metabolism, beginning with 

the PEP and E4P and ends with the 

chorismate. Furthermore, the chorismate is 

an important branching point since it is the 

substrate for all subsequent products, and 

vast diversity of phenolic compounds is 

synthesized through these intermediate 

products (Lattanzio, 2013; Michalak, 

2006). 

 

At the same time, inorganic N and 

K ion (NO3
-
 and K

+
), imbibed by the plant 

roots and transported into the leaves was 

converted into NO2
-
 by nitrate reductase 

and then NH4
+
 by nitrite reductase. The 

NH4
+
 is assimilated into glutamine by 

glutamine synthetase. The glutamine was 

then transferred an amino group to 

chorismate by aminotransferase (Hendawy 

& Khalid, 2011; Z. Li, 2002). The effects 

of phenylalanine and tyrosine on enzyme 

levels and activity showed that chorismate 

mutase P is probably related to 

phenylalanine biosynthesis and chorismate 

mutase T to tyrosine biosynthesis.  

 

Abiotic factors, such as water, N 

and K fertilization could provide the main 

C source for the biosynthesis of the C-

containing compound through efficient 

photosynthesis process (Abdelaziz, 

Pokluda, & Abdelwahab, 2007; 

Heydarizadeh, 2016). Thus, it is 

conceivable that supplying the right 

amount of water and nutrient to G. 

procumbens might increase the secondary 

metabolite biosynthesis and accumulation.  
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