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ABSTRACT   In this work , we present a theoretical study of the magnetization 

of two-electron GaAs parabolic quantum dot (QD) under the combined effects of external  

pressure, temperature and magnetic field. First, we obtain the eigenenergies by solving 

the two electron quantum dot Hamiltonian using the exact diagonalization method. The 

obtained results show that the energy levels of the quantum dot depend strongly on the 

pressure and temperature. Next, we investigate the dependence of magnetization of a 

quantum dot as a function of external pressure, temperature, confining frequency and 

magnetic field. The singlet-triplet transitions in the ground state of the quantum dot 

spectra and the corresponding jumps in the magnetization curves have been shown .The 

comparison shows that our results are in very good agreement with the reported works. 

PACS: 73.21.La, 65.80.-g 

Keywords: Pressure; temperature; magnetization; quantum dot; magnetic field; exact 

diagonalization.  

 

INTRODUCTION 

Quantum dots (QDs), or artificial atoms, 

are the subject of interest research due to 

their physical properties and great 

potential device applications such as 

quantum dot lasers, solar cells, single 

electron transistors and quantum 

computers ( Ashoori et al, 1993 ;Ciftja 

,2013; Kastner , 1992 ; Burkard et al 

,1999 ). The application of a magnetic 

field perpendicular to the dot plane will 

introduce an additional structure on the 

energy levels and correlation effects of 

the interacting electrons that are 

confined in a quantum dot. Different 

approaches were used to solve the two 

electrons QD Hamiltonian, including the 

effect of an applied magnetic field, to 

obtain the eigenenergies and eigenstates 

of the QD-system. Wagner et al. (1992 ) 

studied this interesting QD system and 

predicted the oscillations between spin-
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singlet (S) and spin-triplet (T) ground 

states. 

Taut (1994 )  managed to obtain 

the exact analytical results for the energy 

spectrum of two interacting electrons 

through a coulomb potential, confined in 

a QD, just for particular values of the 

magnetic field strength. In references 

(Ciftja and Kumar , 2004 ; Ciftja and 

Golam Farouk , 2005) the authors solved 

the QD-Hamiltonian by variational 

method and obtained the ground state 

energies for various values of magnetic 

field(ωc) and confined frequency(ω0). 

In addition, they performed exact 

numerical diagonalization for the 

Helium QD-Hamiltonian and obtained 

the energy spectra for zero and finite 

values of magnetic field strength. 

Kandemir (2005) found the closed form 

solution for this QD Hamiltonian and the 

corresponding eigenstates for particular 

values of the magnetic field strength and 

confinement frequencies. Elsaid (2000 ; 

2006) solved the QD-Hamiltonian by the 

dimensional expansion technique and 

obtained the energies of the two 

interacting electrons for any arbitrary 

ratio of coulomb to confinement energies 

and gave an explanation to the level 

crossings.  

Maksym and Chakraborty (1990) 

used the diagonalization method to 

obtain the eigenenergies of interacting 

electrons in a magnetic field and show 

the transitions in the angular momentum 

of the ground states. They calculated the 

heat capacity curve for both interacting 

and non-interacting confined electrons in 

the QD presented in a magnetic field. 

The interacting model showed very 

different behavior from non-interacting 

electrons, and the oscillations in these 

magnetic and thermodynamic quantities 

like magnetization  (ℳ)  and heat 

capacity (Cv)were attributed to the spin 

singlet-triplet transitions in the ground 

state spectra of the quantum dot. De 

Groote, Hornos and Chaplik  (1992) also 

calculated the magnetization, 

susceptibility and heat capacity of 

helium like confined QDs and obtained 

the additional structure in magnetization. 

In a detailed study, Nguyen and Peeters 

(2008)  considered the QD in the 

presence of a single magnetic ion and 

applied magnetic field taking into 

account the electron-electron correlation 

in many electron quantum dot. They 

displayed the dependence of these 

thermal and magnetic quantities:  

Cv,ℳ and χ  on the strength of the 

magnetic field, confinement frequency, 

magnetic ion position and temperature. 

They observed that the cusps in the 

energy levels show up as peaks in the 

heat capacity and magnetization. 

Nammas et al. (2011) used the static 

fluctuation approximation (SFA) to 

study the thermodynamic properties of 

two dimensional GaAs/AlGaAs 

parabolic QD in a magnetic field. 

Boyacioglu and Chatterjee  

(2012) studied the magnetic properties of 

a single quantum dot confined with a 

Gaussian potential model. They 

observed that the magnetization curve 

shows peaks structure at low 

temperature. In a recent work , Boda et 

al.,(2016) had considered the effect of 

Rashba spin-orbit interaction on the 

magnetic properties of a  one-electron 
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Gaussian quantum dot in the presence of 

a magnetic field.  Helle, Harju and 

Nieminen ( 2015 ) computed the 

magnetization of a rectangular QD in  

high magnetic field and the results 

showed the oscillation and smooth 

behavior in the magnetization curve for 

both, nteracting and non-interacting 

confined electrons, respectively.  

In an experimental work , 

(Schwarz et al,2002), the magnetization 

of electrons in GaAs/AlGaAs 

semiconductor QD as function of applied 

magnetic field at low temperature 0.3 K 

had been measured. They had observed 

oscillations in the magnetization .To 

reproduce the experimental results of the 

magnetization, they found that the 

electron-electron interaction should be 

taken into account in the theoretical 

model of the QD magnetization. 

Furthermore, the density functional 

theory method (DFT) had been used to 

investigate the magnetization of a 

rectangular QD in the applied  magnetic 

field ( Rasanen et al.,2003). Climente et 

al. ( 2004) studied the effect of Coulomb 

interaction on the magnetization of 

quantum dot with one and two 

interacting electrons. The effects of 

pressure and temperature on the 

electronic and optical properties of a 

quantum dot presented in external 

magnetic and electric fields had been 

considered very recently by many 

authors ( Rezaei and Kish , 2012 ) .  

The authors presented a 

systematic study of the thermodynamic 

property , namely magnetization of two-

electron system confined in parabolic 

potential in two-dimensional(2D) 

quantum dot    (exemplified by GaAs 

).The system was treated using the 

quantum mechanical framework used for 

helium atom ( two electron system ) with 

non-interacting as well interacting 

electrons. The effects of pressure (P) and 

temperature (T) in the presence of 

magnetic field ( in perpendicular 

direction to QD plane) on the 

magnetization are described through 

analysis and numerical solution. The 

effect of pressure and  temperature we 

incorporated through dielectric constant 

and the effective electron mass. This 

procedure is an appropriate one as the 

experimental studies are interested in 

manipulating these (P,T) parameters to 

understand the dynamics of charge 

carriers in quantum dots. The present 

study is thus useful for validating 

experimental work aiming to 

characterize QD in magnetic field with 

respected to applied pressure and 

temperature variations. Schrodinger 

equation is solved for to theoretical study 

of the magnetization of two-electron 

GaAs parabolic quantum dot under the 

combined effects of external pressure , 

temperature and magnetic field. Energy 

eigenvalues are obtained by using the 

exact diagonalization method. The 

effects of external pressure , temperature 

and magnetic field are expressed by 

plotting some graphics.  

The rest of this paper is organized 

as follows: section II presents the 

Hamiltonian theory and computation 

diagonalization technique of the 

interacting quantum helium atom. In 

section III, we show the numerical 

results of  the magnetization from the 
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mean energy expression. Conclusions 

are given in  the final section . 

 

THEORY 

In this section we describe in 

detail the main two parts of the theory, 

namely: quantum dot Hamiltonian and 

exact diagonalization method . 

Quantum dot Hamiltonian 

The effective mass Hamiltonian 

for two interacting electrons confined in 

a QD by a parabolic potential in a 

uniform magnetic field �⃗� = 𝐵 �̂� can be 

written in a separable form as: 

 

 

�̂� = �̂�CM + �̂�r (1) 

�̂�CM =
1

2M
[P⃗⃗ R +

Q

c
A⃗⃗ (R⃗⃗ )]

2

+
1

2
Mω0

2R2 (2) 

�̂�r =
1

2μ
[p⃗ r +

q

c
A⃗⃗ (r )]

2

+
1

2
μω0

2r2 +
e2

ϵ|r |
 (3) 

 

 

Where ω0,  𝜇 =
𝑚∗

2
 and ϵ are defined as 

the confining frequency, reduced mass 

and the dielectric constant for the GaAs 

medium, respectively. �⃗� =
𝑟1⃗⃗⃗⃗ +𝑟2⃗⃗⃗⃗ 

2
  and   𝑟 = 𝑟2⃗⃗  ⃗ − 𝑟1⃗⃗⃗   are the center of 

mass and relative coordinates, 

respectively.  ωc =
𝑒𝐵

𝑚∗  is the cyclotron 

frequency and  𝐀 =
𝟏

𝟐
𝐁 × 𝐫  is the vector 

potential.  

The corresponding energy of this 

Hamiltonian equation (1) is:

 

 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐶𝑀 + 𝐸𝑟 (4) 

 

The center of mass Hamiltonian given by equation (2) is a harmonic oscillator type with 

well-known eigenenergies: 

 

𝐸𝑐𝑚 = Encm,mcm
= (2ncm + |mcm| + 1)ℏ ω + mcm

ℏωc

2
          (5) 
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where ncm, mcm  and   𝜔 = √𝜔𝑐
2

4
+ 𝜔0

2   are the radial , angular quantum numbers and 

effective  confining frequency, respectively. 

 

However, the relative motion 

Hamiltonian part (Hr), given by equation 

(3) does not have an analytical solution 

for all ranges of ω0and ωc. In this work, 

we applied the exact diagonalization 

method to solve the relative part of the 

Hamiltonian and obtaine the 

corresponding eigenenergies  𝐸𝑟. 

Exact diagonalization method 

  For non-interacting case the 

relative Hamiltonian in equation (3) is a 

single particle problem with 

eigenstates  ⎸𝑛𝑟𝑚𝑟 >   ( Ciftja and 

Kumar , 2004 ; Ciftja and Golam Farouk 

, 2005 ) : 

 

 

|nrmr⟩ = N𝑛𝑟mr

eimrϕ

√2 π
(αr)|mr|e−α2r2 2⁄ Lnr

|mr|(α2r2)     (6) 

 

where the functions Lnr

|mr|(α2r2) are the 

standard associated Laguerre 

polynomials . We calculated the 

normalization constant N𝑛𝑟mr
  from the 

normalization condition of the basis, <

𝑛𝑟𝑚𝑟⎸𝑛𝑟𝑚𝑟 >= 1   , which resulted in

  

 

                                 𝑁𝑛𝑟𝑚𝑟
= √

2nr!α2

(nr+|mr|)! 
                              (7)

     

We used 𝛼 as a constant which has the dimensionality of an inverse length 

 

                                        α =  √
mω

h
                                                                          (8) 

 

The eigenenergies of the QD 

Hamiltonian which are given by 

equation (4) consist of the sum of the 

energies for the center of mass 

Hamiltonian ( 𝐸𝑐𝑚)  and the 

eigenenergies(𝐸𝑟)which are obtained by 
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direct diagonalization to the relative 

Hamiltonian part. For interacting case, 

we applied the exact diagonalization 

method to solve equation (3) and find the 

corresponding exact eigenenergies for 

arbitrary values of ωc and ω0. 

We can write the matrix element of the 

relative Hamiltonian part using the basis 

⎹𝑛𝑟𝑚𝑟 >as, 

 

hnn′ = ⟨nr, mr|Ĥr|n
′
r, 𝑚r⟩ =< 𝑛𝑟𝑚𝑟⎸ −

ℏ2

2𝜇
∇2 +

1

2
  𝜇 𝜔2𝑟2⎹ 𝑛𝑟

ˊ 𝑚𝑟 > +  

< 𝑛𝑟𝑚𝑟 ⎸
𝑒2

𝜖𝑟 
⎹  𝑛𝑟

ˎ 𝑚𝑟 >.                                                                                          (9) 

 

The first term in the right side of equation (9)  is diagonalized as, 

           [(2n + |𝑚𝑧| + 1) √(1 +
𝛾2

4
) −

𝛾

2
 ⎸𝑚𝑧⎹  ] 𝛿𝑛𝑛ˎ                          (10) 

 

Where the Coulomb matrix energy can be given as 

           
λ

√2
√

n′!n!

(n′+|𝑚𝑧|)! (n+|mz|)! 
  × Inn′⎹𝑚𝑧⎹                                                           (11) 

 

where   𝛾 =
𝜔𝑐

𝜔0
 and λ =

𝐞𝟐𝛂

ℏω
 are 

dimensionless parameters while 𝜔2 =

1 +
𝛾2

4
is the effective confining 

frequency . By changing the coordinate 

transformation to t-variable by direct 

substitution of 𝑟 =
√𝑡

𝛼
 in the 

integrationInn′ = 𝐼𝑛𝑟𝑛𝑟
ˎ , we can express 

the Coulomb energy matrix element into 

the integral form: 

 

 

< 𝑛𝑟𝑚𝑟 ⎸
𝑒2

𝜖𝑟
⎹ 𝑛𝑟

ˎ 𝑚𝑟 > ∝  𝐼nn′|mz|
= ∫ dt  t|mz|e−tLn

|mz|(t)L
n′
|mz|(t)

1

√t 

∞

0
  .    (12) 
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We evaluated the above 

Coulomb energy matrix element in a 

closed form by using the Laguerre 

relation given in the Appendix A ( 

Nguyen and Das Sarma , 2011). 

  

This closed form result of the 

Coulomb energy reduces greatly the 

computation time needed in the 

diagonalization process. 

In our calculation, we used the 

basis ⎸𝑛𝑟𝑚𝑟 > defined by equation (6) 

to diagonalize the relative QD 

Hamiltonian and obtain its 

corresponding eigenenergies 𝐸𝑟 . 

To include the effect of the 

pressure (P)  and temperature (T) on the 

QD energy states and the magnetization 

we replace the dielectric constant 𝜖    

with 𝜖𝑟 (𝑃, 𝑇) and the effective mass 𝑚∗ 

with  𝑚(𝑃, 𝑇) in the QD Hamiltonian as 

defined by Equations 2 and 3 ,where 

𝜖𝑟(𝑃, 𝑇)  and 𝑚∗(𝑃, 𝑇)  are the pressure 

and temperature dependent dielectric 

constant and electron effective mass, 

respectively. These pressure and 

temperature dependent mass parameters 

should be included in the energy 

spectrum Eq.4 and the wave functions 

basis eq.6 of the Hamiltonian. For 

quantum dot made of GaAs the 

dependency of  𝜖𝑟(𝑃, 𝑇)  and 𝑚∗(𝑃, 𝑇) 

are given in Appendix B ( Rezaei and 

Kish , 2012) . 

The pressure and temperature 

effective Rydberg (𝑅𝑦
∗(𝑃, 𝑇)) is used as 

the energy unit and given as follows:

 

                       𝑅𝑦
∗(𝑃, 𝑇) =

𝑒2

2𝜖(𝑃,𝑇)𝑎𝐵
∗ (𝑃,𝑇)

                                                                        (13) 

where 𝑎𝐵
∗ (𝑃, 𝑇) is the effective Bohr radius and given as: 

                      𝑎𝐵
∗ (𝑃, 𝑇) = 𝜖(𝑃, 𝑇)ħ2/(𝑚∗(𝑃, 𝑇)𝑒2)                                                     (14) 

So the effective Rydberg can be written as: 

                         𝑅𝑦
∗(𝑃, 𝑇) =

𝑒4𝑚∗(𝑃,𝑇)

2(𝜖(𝑃,𝑇))
2
ħ2

                                                                        (15) 

 

 

The pressure and temperature 

values will be changed to study the 

effects on the ground state energy of the 

QD Hamiltonian in a zero (𝜔𝑐 = 0) and 

finite magnetic field (𝜔𝑐). Eventually, 

the ground state energies of the two 

electron-quantum dot system will be 

calculated as function of temperature 

(T), pressure (P), confining frequency 

( 𝜔0)  and magnetic field  cyclotron 

frequency (𝜔𝑐).The obtained numerical 

results are displayed in the next section. 
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RESULTS AND DISCUSSIONS 

 

We present the effects of 

pressure, temperature , confining 

frequency and magnetic field cyclotron 

frequency on the magnetization of two 

interacting electrons in a quantum dot 

made from GaAs material (effective 

Rydberg R*= 5.825 𝑚𝑒𝑉) in Figures 1 

to 6 and Tables I . To achieve our aim, it 

is essential, as a first step, to investigate 

the dependence of the QD energy levels 

on the pressure and temperature. In 

Figure 1, we display the dependence of 

the QD energy states (m=0,1,2,3 and 4) 

on the magnetic field , 𝜔𝑐, for  pressure 

P=10Kbar and temperature T=0.0K. We 

found that the overall shape of the 

spectra of the QD   remains the same 

while the eigenenergies are enhanced 

under the effect of external pressure. For 

zero magnetic field case , we have tested 

in Table 1 , the computed numerical 

results against the corresponding ones  

produced by  Ciftja and Kumar ( 2004 ) . 

Furthermore, we also compared our 

energies calculated by exact 

diagonalization method ,in this case for 

finite magnetic field , against the energy 

results of analytical variational method ( 

Figure 1 of  Dybalski and Hawrylak 

(2005)) .The comparisons give  excellent 

agreement between the energy spectra of 

two-electron QD Hamiltonian solved by 

different methods. The QD spectra 

shows transitions in the ground state 

angular momentum (m) as the magnetic 

field increases. For example , we 

observed the first transitions in the 

angular momentum of the ground state of 

the QD system , from m=0 to m=1 , 

occurs at 𝜔𝑐 ≈ 0.8 𝑅∗ while the second 

transition ( from m=1 to m=2 ) occurs at 

𝜔𝑐 ≈ 1.2 𝑅∗  . These transitions show 

themselves as cusps in the presented QD-

magnetization curves. Figure 2, displays 

the energies of the quantum dot state 

(m=0) against the magnetic field for 

pressure of values: P = 0, 10, 20 and 30 

Kbar and Temperature T=0.0. The figure 

clearly shows an enhancement in the 

energy level as the pressure increases 

while the magnetic field is kept 

unchanged. Similarly, we have 

investigated , in Figure 3 ,the effect of 

temperature on the energy levels of the 

quantum dot by changing the 

temperature for a wide range : T=0 K, 

150 K and 350 K for no external pressure 

, P= 0.0 Kbar . For fixed values of the 

magnetic field and pressure, the QD 

energy level decreases as the 

temperature increases. Next we show the 

dependence of the magnetization of the 

QD on the pressure, temperature and 

magnetic field. We calculated the 

magnetization (M) defined by: 𝑀 =

−
𝜕〈𝐸〉

𝜕𝐵
,   where  < 𝐸(𝜔0, 𝜔𝑐 , 𝑃, 𝑇) >     

is the statistical average energy of the 

quantum dot system.
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Figure 1: The computed energy spectra of quantum dot versus the strength of the 

magnetic field for ω0 = 0.5R∗  , T=0K, P=10Kbar and angular momentum m =

0,1,2,3,4. 

 

Table 1: The ground state energies of QD ( in 𝑅∗) as a function of dimensionless coulomb 

coupling parameter  𝞴 obtained from exact diagonalization method (second column) 

compared with reported work (third column) , ( Ciftja and Golam Faruk , 2005). 

𝞴 E (Present work) E( Ciftja and Golam Faruk , 2005) 

) 

0 2.00000 2.00000 

1 3.000969 3.00097 

2 3.721433 3.72143 

3 4.318718 4.31872 

4 4.847800 4.84780 

5 5.332238 5.33224 

6 5.784291 5.78429 

7 6.211285 6.21129 

8 6.618042 6.61804 

9 7.007949 7.00795 

10 7.383507 7.38351 
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Figure 2: The computed energy spectra of quantum dot versus the strength of the 

magnetic field for ω0 = 0.5R∗  , T=0K, m=0 and various pressures (P=0 Kbar ,solid; 

P=10Kbar ,dashed; P=20Kbar, dotted and P=30Kbar, thick). 

 

 

Figure 3: The energy of the quantum dot system versus the magnetic field strength for 

ω0 = 0.5 R∗ , P = 0 Kbar, m = 0 and various temperatures(T = 0 K, solid, T = 150 K , 

dashed and T = 350 K, dotted) 

 

Figure 4  shows the effect of the 

pressure on the dependence of the 

magnetization  on magnetic field . The 

magnetization curves are given for  

various values of pressure: P=0 kbar, 10 

kbar , 20 kbar and 30kbar calculated at 

temperature T=.01 K and confining 

energy frequency 𝜔0 = 0.5 𝑅∗    .  For 

example the magnetization changes 

approximately from 𝑀
𝜇𝐵

⁄ =
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−18  (𝑎𝑡 𝑃 = 0.0  𝐾𝑏𝑎𝑟 )  𝑡𝑜  𝑀 𝜇𝐵
⁄ =

 −26  (𝑎𝑡 𝑃 = 3 𝐾𝑏𝑎𝑟) for 𝜔𝑐 = 4𝑅∗  

.In the same manner , we show , in Figure 

5 , the effect of temperature on the QD 

magnetization curve by changing the 

temperature ,T = 0.01K , 1K and 5 K for 

no external pressure (P=0.0 Kbar )  and 

the same confining frequency , 𝜔𝑐 =

0.5𝑅∗    . The magnetization curve shows 

again a significant temperature 

dependence. We can clearly see the great 

reduction in the height of magnetization 

jumps as the temperature increases. For 

T=5K the jumps disappear and the 

magnetization  shows almost a smooth 

behavior curve . Furthermore, we study , 

in Figure 6 ,the effect of confining 

frequency 𝜔0  on  the shape of the 

magnetization curve . We consider 

different values of confining 

frequencies: 𝜔0 = 0.5 , 0.67 𝑎𝑛𝑑 0.8 𝑅∗  

keeping the temperature and the pressure 

parameters both are unchanged: P=0.0 

kbar and T=0.01 K. The magnetization 

curves obviously show a significant 

confining frequency dependence. As we 

increase the confining frequency , 𝜔0  , 

the jumps or the peaks shift to the right. 

This means that more confining 

magnetic energy or high magnetic field 

strength field  is needed to make the first 

transition in the angular momentum of 

QD ground state  , for example : ( m=0 

to m=1  transition)  .These transitions are 

studied intensively and that the origin of 

these transitions is  found to be due to the 

effect of coulomb interaction energy in 

the QD Hamiltonian. These transitions in 

the angular momentum of the QD system 

correspond to the (S-T) transitions and 

manifest themselves as cusps in the 

magnetization curve of the QD, as we 

discussed previously.

 

 

Figure 4: The behavior of the magnetization ( 𝑀 𝜇𝐵
⁄ ) of the two electrons quantum dot 

as function of magnetic field strength for fixed value of confining frequency (𝜔0 = 0.5 
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R*) temperature T=0.01 K and various pressures (P=0 Kbar ,solid; P=10Kbar, dot-

dashed; P=20Kbar , dashed and P=30Kbar  ,dotted). 

 

Figure 5: The magnetization ( 𝑀 𝜇𝐵
⁄ ) of the quantum dot as function of magnetic field 

strength for fixed value of confining frequency (𝜔0 = 0.5 R*) , pressure P=0 Kbar and 

various temperature (T=0.01K,solid; T=1K ,dot-dashed and T=5K   ,dashed). 

 

Figure 6: The dependence of the magnetization ( 𝑀 𝜇𝐵
⁄ ) of the quantum dot on the 

magnetic field strength for fixed temperature (T=0.01K)  , pressure (P=0 Kbar) and 

various  confining frequencies (𝜔0 = 0.5 R*, solid; 𝜔0 = 0.67 R*,dashed and 𝜔0 = 0.8 

R*, dotted). 
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CONCLUSION 

 

In conclusion, we have 

investigated the effects of external 

pressure, temperature and confining 

frequency on the magnetization curve of 

the QD as a function of magnetic field. 

The magnetization, as a thermodynamic 

quantity, shows a significant dependence 

on these quantum dot parameters .We 

apply the exact diagonalization method 

to solve the two electron-QD 

Hamiltonian. The comparison show that 

our results are in excellent agreement 

with other reported works. 
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APPENDIX A: PROPERTIES OF THE LAGUERRE POLYNOMIALS 

The following Laguerre relation was used to evaluate the Coulomb energy matrix element 

in a closed form: 

∫ tα −1e−ptLm
λ (at)Ln

β (bt)dt
∞

0
= 

Γ(α)(λ+1)m(β+1)np−α

m!n! 
∑

(−m)j(α)j

(λ+1)j j!
(
a

p
)
j
∑

(−n)k(α+j)k

(β+1)k k!
(
b

p
)
k

n
k=0

m
j=0                               (A 1) 

 

 

APPENDIX B: THE PRESSURE AND TEMPERATURE DEPENDENT 

DIELECTRIC CONSTANT AND ELECTRON EFFECTIVE MASS. 

 

∈𝑟 (𝑃, 𝑇) =

{
12.74 exp(−1.73 × 10−3𝑃) exp[9.4 × 10−5(𝑇 − 75.6)] for T < 200 K

13.18 exp(−1.73 × 10−3𝑃) exp[20.4 × 10−5(𝑇 − 300)] forT ≥ 200 K
                (B 1) 

𝑚∗(𝑃, 𝑇) = [1 + 7.51 (
2

𝐸𝑔
г (𝑃,𝑇)

+
1

𝐸𝑔
г (𝑃,𝑇)+0.341

)]
−1

𝑚0                                              (B 2)  

 𝐸𝑔
г(𝑃, 𝑇) = [1.519 − 5.405 × 10−4 𝑇2

𝑇+204
] + 𝑏𝑃 + 𝑐𝑃2                                           (B 3) 

Where 𝑚0is the free electron mass, 𝐸𝑔
г(𝑃, 𝑇) is the pressure and temperature dependent 

energy band gap for GaAs quantum dots at г point, b= 1.26× 10−1eV GPa−1and c = -

3.77× 10−3eV GPa−2. 

  

 

 

 


