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ABSTRACT  Mathematical research about Meningococcal meningitis disease 

usually focused in one region, however the spread of this disease also can be caused by 

residents who visiting epidemic region. So, the purposes of this study are (1) to establish a 

mathematical model of Meningococcal meningitis disease between two regions, particularly 

Indonesia and Saudi Arabia, (2) to analyze the stability of each equilibrium points, (3) and to 

explain the model simulation of Meningococcal meningitis with the effect of vaccination on 

populations from Indonesia. The disease-free equilibrium point is locally asymptotically 

stable when the reproduction number is less than one and unstable when the reproduction 

number is more than one. In addition to the stability of the locally asymptotically stable 

endemic equilibrium point when the reproduction number is more than one. Based on the 

model simulation, if the level of vaccination is higher, then the infected class on populations 

from Indonesia and Inffected class from Saudi Arabia will decrease tend to zero. The 

vaccination program can be used to control the transmission of Meningococcal meningitis 

disease. It also can be useful to monitor the efficiency of vaccination program in the country. 
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INTRODUCTION 

 

Meningococcal meningitis, caused 

by Neisseria meningitides, is a serious 

form of meningitis and has the highest 

mortality rate if untreated. In addition, 

meningitis caused by this type of bacteria 

is reported to have a mortality rate in 

developed countries with a percentage of 

about 70 80%  before treatment 

(Martcheva & Crispino-O’Connell, 2003). 

The ratio between epidemic and mean 

endemic incidence rates is generally 

higher in developing countries than in 

developed (World Health Organization, 

2002). It happens relatively rarely, the 

incidence is less than 5 cases over 100,000 

populations (Centers for Disease Control 

and Prevention, 2015).  

 

Meningococci are transmitted by 

droplets from the respiratory tract, and 

infected individuals can transmit the 

bacteria up to 24 hours after the initiation 

of antibiotic treatment. Although 

colonization occurs in more than 10% of 

adults, rates as high as 42% have been 

observed among adolescents and young 

adults due to the social behavior of these 

populations i.e. kissing, smoking, and 

alcohol consumption that predispose them 

to transmission (Martinez et al.,2013).  

 

N. meningitidis lives exclusively in 

the human upper respiratory tract and it is 

transmitted between hosts via oral 

secretions or direct contact. By means of 

their pili, meningococci adhere selectively 

to non-ciliated columnar cells of the 

nasopharynx, starting to multiply and 

colonize the site of mucosal attachment. 

They can survive even if phagocytosed by 

epithelial cells, from which they can 

escape to reach the submucosal or directly 
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invade damaged epithelial surfaces. It has 

been reported that diplococci colonies can 

be carried for several months even more 

than one year (Hung & Christodoulides, 

2013). 

 

Meningococcal meningitis is an 

infectious disease that is often carried by 

Hajj or Umrah where the disease occurs 

acutely and rapidly spreads to the 

congregation (Yezli, Assiri, Alhakeem, 

Turkistani, & Alotaibi, 2016). Based on 

the data from the World Health 

Organization, countries in the African 

continent are still an endemic country of 

meningitis disease. Given the geographical 

position of Saudi Arabia whose position 

lies precisely close to the African 

Continent, it is assumed that this area 

becomes an area with a high endemic 

prevalence such that the potential for 

contagious diseases for hajj jama'ah or 

umrah can occur quickly. In the other side, 

the number of Hajj or Umrah originating 

from Indonesia tends to increase every 

year and hence the potential spread of this 

disease can occur in Indonesia. Based on 

data from the Ministry of Religious Affairs 

of the Republic of Indonesia (2015), the 

average number of umrah from Indonesia 

is 195 people per day and the average 

number of hajis from Indonesia is 154,000 

people per year.  

 

Vaccination strategies used to 

manage meningococcal disease vary based 

on specific conditions within a region or 

country and the needs of the target 

population. For instance, routine, age-

based prophylactic immunization is often 

used when typical, or endemic, disease 

rates prevail in specific age groups. In 

contrast, mass vaccination is often 

deployed under epidemic conditions, 

defined as an increase in cases compared 

with baseline endemic conditions 

(Vuocolo, et al., 2018). 

 

Meningitis vaccine is a mandatory 

vaccine that must be done by prospective 

pilgrims to protect the risk of contracting 

meningococcal meningitis. Meningitis 

vaccine contains antigens, a substance that 

stimulates the immune system to form 

antibodies and fight the bacteria that cause 

meningitis, hence vaccine can reduce the 

risk of meningococcal Meningitis disease. 

Mathematics research about meningitis 

vaccine using control had done by 

Asamoah, et al. (2018). Blyuss (2016) also 

had discussed temporary population 

immunity to meningitis disease which can 

be useful to measure the efficiency of 

vaccines. 

 

Furthermore, usually, mathematical 

research about meningitis is discussed in 

one region. For example Irving, et al. 

(2012) who had discussed meningitis in 

the Africa, and also Wiah (2010) who had 

discussed the disease in the Ghana. 

Therefore, it is logic if the discussion of 

meningitis is divided into two regions, for 

example between Indonesia and Saudi 

Arabia. 

 

In this paper, a new model will be 

developed between the two regions in 

which case Indonesia (INA) and Saudi 

Arabia (KSA) use the population 

compartment 𝑆𝐶𝐼𝑅 − 𝑆𝐼. This is done to 

see how the differences in population 

dynamics in each region caused by 

population movement. The displacement 

of the population is Indonesian citizens 

who will travel to Saudi Arabia as an 

umrah or hajj pilgrim, and the citizens of 

Saudi Arabia who also perform the 

pilgrimage. 
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MODEL FORMULATION AND 

ANALYSIS 

 

There are six groups of individuals 

to be used, namely the number of 

susceptible populations present in 

Indonesia (𝑆𝐼𝑁𝐴), the number of bacterial 

carriers present in Indonesia (𝐶𝐼𝑁𝐴), the 

number of infected populations present in 

Indonesia (𝐼𝐼𝑁𝐴), the number of recovering 

populations Indonesia (𝑅𝐼𝑁𝐴), the number 

of susceptible populations present in Saudi 

Arabia (𝑆𝐾𝑆𝐴), and the number of infected 

populations present in Saudi Arabia (𝐼𝐾𝑆𝐴).  

 

To simplify the process of 

modeling the spread of Meningococcal 

meningitis between Indonesia (INA) and 

Saudi Arabia (KSA) regions, assumptions 

are made. The assumptions used in this 

study are: 

 

1. There are susceptible and infected 

individuals in both areas, 

especially in Indonesia, there are 

individual carriers of bacteria 

(carrier). 

2. There are susceptible individuals 

who are given vaccinations in 

Indonesia and vaccinated 

individuals are not affected by the 

disease and fall into the cured 

category. 

3. There are susceptible individuals, 

carriers of bacteria, infected and 

cured who died naturally in 

Indonesia. 

4. There are susceptible and infected 

individuals who die naturally in 

Saudi Arabia. 

5. The individual rate of all classes 

who die naturally for both regions 

is the same. 

6. Individuals infected can recover in 

Indonesia. 

7. Contacts between the two countries 

occurred during the Hajj and 

Umrah season. 

 

The incubation period of 

meningococcal disease is 3 to 4 days, with 

a range of 2 to 10 days. Meningitis is the 

most common presentation of invasive 

meningococcal infection (meningococcal 

disease) and results from hematogenous 

dissemination of the organism (Asamoah, 

et al. 2018). So, time unit (t) is assumed to 

be calculated in weeks because the 

incubation period may exceed seven days 

(one week). The variables and parameters 

used in this modeling are: 

 

Table 1. Variables and Parameters. 

Variable Definition Range 

INAS  The number of susceptible populations from 

Indonesia 
0INAS   

INAC  The number of bacterial carrier population 

from Indonesia 
0INAC   

INAI  The number of infected populations from 

Indonesia 
0INAI   

INAR  The number of recovered population from 

Indonesia 
0INAR   

KSAS  The number of susceptible populations from 

Saudi Arabia 
0KSAS   

KSAI  The number of infected populations from 

Saudi Arabia 
0KSAI   

Parameter   

A  The number of prospective Hajj / Umrah 

pilgrims from Indonesia 

0A   
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  The number of prospective Hajj / Umrah 

pilgrims from Saudi Arabia 

0   

  The rate of individuals experiencing natural 

deaths in all groups 

0   

  The average number of contacts between the 

INAS   population and the KSAI   population 

0   

  The average number of contacts between the 

KSAS   population and the INAI   population 

0   

1  Probability of disease transmission from  KSAI  

 population to INAS   population 

10 1   

2  Probability of disease transmission from  INAI

population to KSAS population 

20 1   

  Effectiveness of treatment on infected 

individuals 

0   

k  Recovery rate of infected individuals 0k   

v  The transfer rate in the individual carriers of 

the bacteria (carrier) becomes an infected 

individual 

0v   

  Proportion of vaccinated susceptible 

individuals in Indonesia 

0 1   

 

According to the data in Table 1 and based 

on assumptions, the compartment diagram 

of the spread model of the Meningococcal 

meningitis disease can be depicted in 

Figure 1 as follows: 

 

 
 

Figure 1. Compartment diagram of the spread model of Meningococcal meningitis disease  

between INA and KSA regions. 

 

According to Figure 1, obtained mathematical model is as follows: 

 
   11  

INA

INA KSA INA

dS t
A S I S

dt
          

 
 1

INA

INA KSA INA

dC t
S I v C

dt
      



Malaysia Journal Of Science 38 (2):79-97, August 2019 

 

 

 84 

 
 INA

INA INA

dI t
vC k I

dt
           (1) 

 INA

INA INA INA

dR t
k I S R

dt
       

 
 2 

KSA

INA KSA

dS t
I S

dt
       

 
2

KSA

KSA INA KSA

dI t
S I I

dt
     

with the domains of the variables in the model are 

 
6Ω {( , , , , , ) : , , , , , 0}INA INA INA INA KSA KSA INA INA INA INA KSA KSAS C I R S I S C I R S I  R   

 

and parameters employed in the model are , , , , , ,  ,A v k      all of them are positive and  

1 20 1, 0 1     , and 0 1.   

 

Model Transformation 

 

Model transformation is used to 

analysis the solution behavior that can be 

easier. In this article, system (1) needs to 

be simplified by scaling, namely by 

changing the system (1) to form a 

proportion between the number of 

individuals in a subpopulation with the 

total population. Lemma 1 shows us how 

to get the proportion of INA populations. 

 

Lemma 1 

Given the initial value  0 0F   , with    , , ,INA INA INA INAF t S C I R . The solution of the 

model (1) for the INA population is non−negative for all 0t  . Furthermore

 
 1

lim INA
t

A
supN t






   with          INA INA INA INA INAN t S t C t I t R t     . 

 

Proof 

Based on system (1), 

INA INA INA INA INAdN dS dC dI dR

dt dt dt dt dt
      

   1 11      INA KSA INA INA KSAA S I S S I             

      INA INA INA INAk I k I S R          

   1 INA INA INA INAA S C I R            

   1 INA INA INA INAA S C I R         

Because of          INA INA INA INA INAN t S t C t I t R t     we obtained 
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 1INA
INA

dN
A N

dt
     .     (2) 

The value of 0INAdN

dt
 if

 1
INA

A
N






 . On the other hand, 0INAdN

dt
  if

 1
INA

A
N






 . 

So the least upper bound INAN  is
 1A 




. Model in system (1) describes the human 

population (INA) infected with meningococcal meningitis, it means that if all variables are 

non-negative for 0t  , then the solution with positive initial value will always remain 

positive  0t  . 

 Based on Equation (2), it is called the rate of change of total population in Indonesia, 

as t   the solution INAN   approaches
 1A 




. Furthermore, Lemma 2 shows us how to 

get the proportion of KSA populations. 

 

Lemma 2 

Given the initial value  0 0F  , with    ,KSA KSAF t S I . The solution of the model (1) for 

the KSA population is non−negative for all 0t   . Furthermore lim KSA
t

supN



   with

     KSA KSA KSAN t S t I t  . 

 

Proof 

Based on system (1), 

KSA KSA KSAdN dS dI

dt dt dt
    

             2 2INA KSA KSA INA KSAI S S I I           

2 2INA KSA KSA KSA INA KSAI S S S I I          

  KSA KSAS I      

 KSA KSAS I     

Because of      KSA KSA KSAN t S t I t   we obtained 

KSA
KSA

dN
N

dt
          (3) 
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The value of 0KSAdN

dt
 if 

KSAN



 . On the other hand,  0KSAdN

dt
  if

KSAN



 . So, the least 

upper bound KSAN is



. Model in system (1) describes the human population (KSA) infected 

with meningococcal meningitis, it means that if all variables are non-negative for 0t  , then 

the solution with positive initial value will always remain positive  0t  . 

 Based on Equation (3), it is called the rate of change of total KSA population. As  

t  , the solution KSAN  approaches



. It means from Lemma 1 and 2, we can define the 

subset T by the equations 
 1

INA INA INA INA

A
S C I R






     and KSA KSAS I




  . It is an 

invariant region for system (1), since 
 1

INA

A
N






  and KSAN




 , all paths approach T. 

Therefore, it is enough to analyse the asymptotic behaviour of solution of system (1) in this 

invariant set. 

 The INA populations and KSA populations remain constant in T, then, without loss of 

generality, we can use the proportions 

       
, , ,

1 1 1 1
INA INA INA INA

INA INA INA INA

S C I R
s c i r

A A A A   

   

   
   

, 

and 

,KSA KSA
KSA KSA

S I
s i

 

 

  .  

 

Using these proportions, system (1) in the invariant space T can be written as follows 

 1
INA

INA KSA INA

ds
s i s

dt


   



 
    

 
  

 1
INA

INA KSA INA

dc
s i v c

dt


 



 
   

 
  

 INA
INA INA

di
vc k i

dt
            (4) 

  INA
INA INA INA

dr
k i s r

dt
       

 
2

1
KSA

INA KSA KSA

Ads
i s s

dt


  



 
   

 
  

 
2

1
 KSA

KSA INA KSA

Adi
s i i

dt


 



 
  

 
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System (4) which is a nonlinear equation system is the transformation result of the 

mathematical modeling of the spread of Meningococcal meningitis disease in the system (1). 

Now, we give a more analysis of the system (4). 

 

Equilibrium Points 

Equilibrium points of system (2) are obtained if (Perko, 2001) 

0INA INA INA INA KSA KSAds dc di dr ds di

dt dt dt dt dt dt
       

Theorem 1 

i.    If 0INA INA KSAi c i   , then system (4) has disease free equilbrium point 

 * * *

0 ,0,0, , ,0INA INA KSAE s r s  

where * *,INA INAs r
 

   
 

 
 and * 1KSAs  .   

ii. If 0INA INA KSAi c i   , then system (4)  has the endemic equilibrium point 

 ** ** ** ** ** **

1 , , , , ,INA INA INA INA KSA KSAE s c i r s i  

where
 

   
0**

0 1
INA

R M
s

R M



 




 
, 

 

 
1 0**

2 0

1

1
INA

B R
c

B R M

 



, 

 

 
1 0**

3 0

1

1
INA

v B R
i

B R M

 



, 

 

 

 

   
1 0 0**

3 0 0

1

1 1
INA

k vB R R M
r

B R M R M

 

 

 
 

  
, **

0

1
KSA

M
s

R M





, ** 0

0

1
KSA

R
i

R M





. 

Proof 

From each equation in system (4) with the right-hand side equal to zero, then system (4) can 

be written as follow 

 
 1 0

INA

INA KSA INA

ds t
s i s

dt


   



 
     

 
             (5.1) 

 
 1 0

INA

INA KSA INA

dc t
s i v c

dt


 



 
    

 
              (5.2) 

 
  0

INA

INA INA

di t
vc k i

dt
                    (5.3) 

 
  0

INA

INA INA INA

dr t
k i s r

dt
                     (5.4) 

   
2

1
  0

KSA

INA KSA KSA

ds t A
i s s

dt


  



 
    

 
             (5.5) 

   
2

1
0

KSA

KSA INA KSA

di t A
s i i

dt


 



 
   

 
              (5.6) 

i. Since 0INA INA KSAi c i   , from equation (5.1) is obtained  

 
 INAs



 



       (6) 
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Since 0INA INA KSAi c i   , then substitution (6) into equation (5.4) then it is obtained 

 INAr


 



       (7) 

Since 0INA INA KSAi c i   , then the equation (5.5) obtained 

1 .KSAs         (8) 

Based on equation (6)-(8), we obtain  * * *

0 ,0,0, , ,0INA INA KSAE s r s   with * ,INAs


 



  

INAr


 



and * 1KSAs  . It is called disease free equilibrium. 

 

ii. Furthermore, if 0,  0,  0INA INA KSAi c i   , then from equation (5.1) we obtain 

1

INA

KSA

s
B i



 


 
      (9) 

with 1 1B





 . If equation (6) is substituted into equation (5.2), then we obtain 

 
1

1 2

KSA
INA

KSA

B i
c

B i v B






 
                (10) 

 

with   2B v     .  If equation (10) is substituted into equation (5.3), then  

     
  

1

1 3

KSA
INA

KSA

v B i
i

B v k i B



  


  
                (11) 

with  3 2B B k   . If equations (9) and (11) are substituted into equation (5.4), then we 

obtain 

 
  

1

1 3 1

KSA
INA

KSA KSA

k vB i
r

B v k i B B i

 

    
 

    
            (12) 

From equation (5.5), it is obtained  

  
  1

KSA

INA

s
R i



  


 
,             (13)  

with 

 
2

1

1A

R






 






 and INAi  as shown in (11). Furthermore, from equations (11) and (13), 

it is obtained 

 

    
1 1 3

1 1 1

KSA

R vB B
i

R vB v k B

 

    

 


   
.            (14)  

If 
  1 1

0

3

v B R
R

B

 
  and 1B

M
 




, then Equation (14) can be simplified as follow 

0

0

1
KSA

R
i

R M





.                       

(15) 

Substituting Equation (15) in Equations (9) – (13) we obtain the endemic equilibrium point  
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 ** ** ** ** ** **

1 _, , , , ,INA INA INA INA KS KSAE s c i r s i  

where
 

   
0**

0 1
INA

R M
s

R M



 




 
, 

 

 
1 0**

2 0

1

1
INA

B R
c

B R M

 



, 

 

 
1 0**

3 0

1

1
INA

v B R
i

B R M

 



, 

 

 

 

   
1 0 0**

3 0 0

1

1 1
INA

k vB R R M
r

B R M R M

 

 

 
 

  
, **

0

1
KSA

M
s

R M





, ** 0

0

1
KSA

R
i

R M





. It means that 

the Theorem 1 has been proven.      □ 

 

Basic Reproduction Number 

 

Basic reproduction number (𝑅0) is 

the number of individuals who directly 

infected by an infectious person in the 

susceptible population (Holme & Masuda, 

2015). There are many methods to find 

this number, for example using M-matrix 

(Raimundo, Yang, & Venturino, 2014), 

using spectral radius theory (Driessche & 

Watmough, 2002), using Jacobi and next 

generating method (Yang, 2014). In this 

paper, we use next generating matrix to 

determine basic reproduction number 

following what has done by Yang (2014). 

This matrix is constructed from 

sub-populations that cause infection. In 

this model, the cause of infection is the 

carrier and infected population in 

Indonesia and the infected populations 

from Saudi Arabia. So, we use system 

(16). 

 

 
 1 

INA

INA KSA INA

dc t
s i v c

dt


 



 
   

    
 

 INA

INA INA

di t
vc k i

dt
   

                  (16) 

   
2

1KSA

KSA INA KSA

di t A
s i i

dt


 



 
  

    

We define F as the linearization result of the system (16) in
 0 ,0,0, ,1,0E

 

   

 
     

. It 

is a matrix of the rate new individuals infected by the disease which adds to infection class. 

 

 

1

2

0 0

0 0

1
0 0

F v

A

 


  






  
  

   
 
 
  

  
  

               (17) 

We also define V as the linearization result of the system (16) in

 0 ,0,0, ,1,0E
 

   

 
      . It is a matrix of the death rate and/or recovery rate which 

reduces infection class 

0 0

0 0

0 0

v

V k



 



 
 

 
 
     
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The inverse matrix V is 

1

1
0 0

1
0 0

1
0 0

v

V
k



 





 
 


 
 

  


 
 
 
 

                 (18) 

Next generating matrix, K, is obtained as the result of multiplication between F in (17) and 

𝑉−1 in (18) 

 

 

 

1

1

2

0 0

0 0

1
0 0

v
K FV

v

A

k

 

  



 

  



 
 

 
 

   
 

 
 

  

  

Basic reproduction number, �̃�0, is obtained from the largest eigenvalue of K in (19). We have  

�̃�0 = (𝑅0)
1
3 

In this case, the basic reproduction number 𝑅0 is taken as part of �̃�0. 
 

Stability Analysis of the Equilibrium Point 

2.4.1 Stability of the Disease Free Equilibrium Point 

Theorem 2 

i. If 𝑅0 < 1, then the disease-free equilibrium point (𝐸0) is locally asymptotically stable. 

ii. If 𝑅0 > 1, then the disease-free equilibrium point (𝐸0) is unstable. 

 

Proof 

The Jacobian matrix of System (4) in 𝐸0 is 

  

 

 

 

 

 

1

1

0

2

2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

1
0 0 0 0

1
0 0 0 0

v

v k
J E k

A

A

 
  

  

 
 

  

 

  


 




 



 
   
 
 

  
 

  
  
 
  

   
  
 

    
  

.            (20) 
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The eigenvalues of  0J E  in (20) are determined using   0det  0I J E    where as 

eigenvalue and I as identity matrix, then we have the characteristic equation as follow 

           
 

1 2

1
0

A
v k v

 
               

   

  
            

   

   (21) 

From the equation (21), the first three of the eigenvalues are  

     1 2 3,  , v k                . 

It can be seen that 𝛾1, 𝛾2, and 𝛾3 are negative. Hence the rest eigenvalues satisfy  

      
 

1 2

1
0.

A
v k v

 
        

   

 
       

  
              (22) 

Equation (22) has characteristic polynomial which can be written as shown in (23) 
3 2

1 2 3a a a     ,                 (23) 

where 

   1a v k         

      2 v ka k v               

    03 1ka v R        

We use Routh Hurwitz conditions (Wirkus, Swift, & Szypowski, 2017) to determine the 

value of each eigenvalue in (23). The eigenvalues in (23) have negative real parts if 

1 2 3, , 0a a a   and 1 2 3a a a . These conditions are satisfied if 0 1R  . Thus, disease free 

equilibrium of system (5) is locally asymptotically stable if 0 1R  and unstable if 0 1R  . 

Hence the proof completes.         □ 

2.4.2 Stability of the Endemic Equilibrium Point 

Theorem 3 

i. If 0 1R  , then the endemic equilibrium point  1E is locally asymptotically stable. 

ii. If 0 1,R   then the endemic equilibrium point  1E  is unstable. 

 

Proof 

The Jacobian matrix of System (4) in 𝐸1 is 

𝐽(𝐸1) =

[
 
 
 
 
 
 
 
 −𝜋𝛽1𝑖𝐾𝑆𝐴

∗∗ (
𝛽

𝜇
) − (𝜃 + 𝜇) 0 0 0 0 −𝜋𝛽1𝑠𝐼𝑁𝐴

∗∗ 𝛽

𝜇

𝜋𝛽1𝑖𝐾𝑆𝐴
∗∗ (

𝛽

𝜇
) −(𝜇 + 𝑣) 0 0 0 𝜋𝛽1𝑠𝐼𝑁𝐴

∗∗ 𝛽

𝜇

0 𝑣 −(𝜇 + 𝑘𝜑) 0 0 0
𝜃 0 𝑘𝜑 −𝜇 0 0

0 0 −𝜏𝛽2 0 −𝜏𝛽2𝑖𝐼𝑁𝐴
∗∗ 𝐴(1−𝜃)

𝜇
− 𝜇 0

0 0 𝜏𝛽2𝑠𝐾𝑆𝐴
∗∗ (

𝐴(1−𝜃)

𝜇
) 0 𝜏𝛽2𝑖𝐼𝑁𝐴

∗∗ 𝐴(1−𝜃)

𝜇
−𝜇 ]

 
 
 
 
 
 
 
 

              (24) 

One of the eigenvalues of the  1J E is   and the sign of the rest eigenvalues can be seen 

using Routh Hurwitz criterion. The characteristic polynomial is given by 
5 4 3 2

1 2 3 4 5b b b b b         ,              (25)  

where 
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0 0
1 5 1

0

1 1
2 ,

1

R R
b z B

R M M
 

   
      

   
  

0 0 0 0
2 6 1 7 1 8

0 0

1 1 1 1
,

1 1

R R R R
b z B z B z

R M M R M M


         
         

         
  

0 0 0 0
3 9 1 11 1 12 13

0 0

1 1 1 1
,

1 1

R R R R
b z B z B z z

R M M R M M


   
   

   
  

 
2 0 0 0 0 0

4 1 1 1 2 3 4

0 0 0

1 1 1 1 1
2 ,

1 1 1

R R R R R
b z R vB z z z

R M R M M R M M


    
    

    
  

 0 0 0 0
5 0

0 0

1 1 1 1
1 ,

1 1

R R R R
b M R

R M M R M M


  

 

   
    

    
  

  2

1 3 1z k B B          ,   1 1
2

0

B R v
z k

R
     ,  

 2

3 1 3 3 2z v B B M B M B        ,  4 1 3z v B B     ,

     5z k v          ,      2

6 5 22z z B k v k                 , 

   7 2z k v        , 2

8 5z z   , 

        2

9 2 52 2 2z B k v k z v k                        , 

   10z k v        , 2

11 10z z  ,   2

12 102z z k v        , 

       13 9 2z z k v k B                   . 

 

The Routh Hurwitz conditions that guarantee that the eigenvalues of the characteristic 

polynomial (25) have negative real parts are given by 1 2 3 4 5, , , , 0b b b b b   and 
2 2 2 2 2

1 2 3 4 1 4 5 2 3 5 5 1 2 5 1 4 3 42bb b b bb b b b b b bb b b b b b      . These conditions are easily seen to be 

satisfied if 𝑅0 > 1. Thus, the endemic equilibrium point (𝐸1) of system (5) is locally 

asymptotically stable when 𝑅0 > 1 and unstable when 𝑅0 < 1. This completes the proof. □ 

 

 

RESULT AND DISCUSSION 

 

The mathematical model of the 

Meningococcal meningitis disease spread 

would be simulated to provide a geometric 

pattern in accordance with the conditions 

of the basic reproduction number and the 

influence of giving vaccine to the Hajj / 

Umrah pilgrims from Indonesia. Basic 

reproduction number can be used to 

determine whether the disease disappears 

or endemic in the population.  

 

The average number of Umrah 

pilgrims from Indonesia is 195 people per 

day, hence there are 1,365 people per 

week to Umrah. The average number of 

Hajj pilgrims from Indonesia is 154,000 

people per year, hence there are 2,961 Hajj 

pilgrims per week (Ministry of Religious 

Affairs of the Republic of Indonesia, 

2015). Therefore the number of 

prospective Hajj/Umrah pilgrims from 

Indonesia per week (𝐴) is 4,326 people. 

On the other side, the average number of 

Hajj/Umrah pilgrims from Saudi Arabia is 

700,000 people per year (General 

Authority for Statistic, 2017), so every 

week there is    13,461 people from 

Saudi Arabia. 
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Table 2. The parameter values of the Meingococcal meningitis model 

Parameter Parameter value Reference 
   0.000274 Roser (2019) 

   0.00023 Assumption 

   0.0000742 Assumption 

1   0.7 Martinez, M. J. F. 

(2013) 

2   0.5 Assumption 

   0.1 Assumption 

k   1 Stephens, et all 

(2007) 

v   1 Irving, et all 

(2012) 

   0 1    Assumption 

  

 

 

1. Mathematical Model Simulation on Meingococcal meningitis Infectious Disease Spread 

without Vaccination Effect or 0    

 

 
Figure 2. Simulation with 0    

 

 

In Figure 2, for 0  , it can be 

seen that if vaccination is not given on 

population from Indonesia, then both INAi  

and KSAi  population increase significantly 

and the disease will continue to spread. 

Under these circumstances, the value of

0  is  2874.593 1R   and it only need 10 

weeks to approach the highest INAi  

population. 
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Mathematical Model Simulation on Meingococcal meningitis Infectious Disease 

Spread with Vaccination Influence for 0.5    

 

 
Figure 3. Simulation with 0.5   

 

In Figure 3, with a vaccination rate 

of 0.5  , it appears that the number of 

infected individuals present in Indonesia 

appears to decrease more rapidly than in 

Figure 2. This indicates that the higher 

vaccinations are given, the infected 

individuals will disappear faster than the 

population, but in Figure 3 this still has not 

led to zero so that at some time 

Meningococcal meningitis disease will 

remain in the population indefinitely. 

Under these circumstances, the condition

0  0.787207  1R   . That is, infected 

people can hardly infect others but 

infected people still exist in the 

population.

 

2. Mathematical Model Simulation on Meingococcal meningitis Infectious Disease Spread 

with Vaccination Influence for 0.9    

 

 
Figure 4. Simulation with 𝜃 = 0.9 
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In Figure 4, it can be seen that many 

infected and carrier individuals present in 

Indonesia decrease to zero so that at 

certain times Meningococcal meningitis 

disease disappears from the population. 

This suggests that the higher vaccination is 

given to susceptible individuals present in 

Indonesia, then the disease will disappear 

faster than the population. Vaccination 

with 0.9  is considered the most 

effective because carriers and infected 

populations can lead to zero. On the graph, 

it appears that the disease will disappear at 

week 50. In these circumstances, the 

condition 0 0.087489  1 R    which means 

the infected population will not infect 

other populations. 

 

 

CONCLUSIONS 

 

Based on the discussion that has been 

described above it can be concluded that 

mathematical modeling of infectious 

disease of Meningococcal meningitis 

spread in the form of nonlinear differential 

equations systems 𝑺𝑪𝑰𝑹 − 𝑺𝑰 models 

were shown in the system (1) and its 

transformation was in the system (4). The 

disease-free equilibrium point was 

obtained 

 

 * * *

0 ,0,0, , ,0 INA INA KSAE s r s
 

where * *,s


  
 

 
INA INAr   and * 1KSAs    

and the endemic equilibrium point was obtained  

 ** ** ** ** ** **

1 , , , , ,INA INA INA INA KSA KSAE s c i r s i   

where
 

   
0**

0 1
INA

R M
s

R M



 



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If 0 1R  , then the disease-free equilibrium 

point is local asymptotically stable and if

0 1R  , then the disease-free equilibrium 

point is unstable. If 0 1R  , then the 

endemic equilibrium point is local 

asymptotically stable and if 0 1R  , then the 

endemic equilibrium point is unstable. 

Based on the simulation, with the 

influence of giving a vaccine for 

Hajj/Umrah from Indonesia, it showed that 

the higher the level of vaccinations given, 

it will cause the decreasing number of 

infected individuals. This suggests that 

vaccination programs can be used to 

reduce the number of infected individuals 

caused by the spread of infectious diseases 

of Meningococcal meningitis that occur 

between two different areas. In this paper 

we only discuss a model of Meningococcal 

meningitis infectious diseases spread with 

vaccination effect only from Indonesian 

susceptible populations that are given the 

vaccination. Therefore, further research is 

recommended to discuss the spread of 

infectious diseases of Meningococcal 

meningitis by the influence of vaccinations 

for susceptible populations from Indonesia 

and Saudi Arabia. Then for stability 

analysis it is suggested to discuss the 

global stability analysis for the spread of 

infectious disease of Meningococcal 

meningitis with or without the vaccination. 
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