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ABSTRACT  This paper examines the properties of and applications to empirical 

modelling as well as computation of probabilities of Kempton’s generalization of the 

negative binomial and log-series distributions. Important properties of infinite divisibility 

and unimodality have been derived. To facilitate computation of the complicated 

probabilities, practical implementation of the three-term probability recurrence relations is 

presented. While the generalization of the negative binomial and log-series distributions 

have been formulated to fit extremely long-tailed count data, the versatility of this 

generalized negative binomial distribution to fit short-tailed and long-tailed data is 

illustrated here. 
 

Keywords: infinite divisibility, mixed Poisson, numerical stability, three-term recurrence, 
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INTRODUCTION 

 

 The statistical modelling and 

analysis of species abundance is an area 

of great interest and importance in 

ecology since the seminal paper by 

Fisher, Corbet and Williams (1943); see 

for example, Dallas et al. (2017) and 

Weber et al. (2017). To model species 

abundance, Fisher, Corbet and Williams 

(1943) showed that the number of species 

is , with i  individuals in a sample, 

follows a log-series distribution. This was 

modelled as follows: Assume that for 

some species with a given abundance, the 

number of individuals follows a Poisson 

distribution, and the abundances among 

species follow a gamma distribution. The 

individuals are then seen to follow the 

negative binomial (NB) distribution. For 

modelling the species abundance, the NB 

distribution is truncated at zero since the 

number of species is unknown. Fisher, 

Corbet and Williams (1943) noticed that 

the shape parameter of gamma 

distribution (mixing distribution) should 

be allowed to go to 0 while the number of 

species approaches infinity with their 

product going to a positive constant c . 

 

 Sharing a similar idea, Kempton 

(1975) considered the generalization of 

the log-series distribution (GLSD) by 

deriving the generalization of NB 

distribution, which is also known as the 

full beta model (FBM) (see also Holla 

and Bhattacharya, 1965). Kempton 

(1975) obtained the FBM as a mixed 

Poisson distribution with mixing 

distribution having a probability density 

function (pdf) given as
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Then the resultant distribution has the following probability mass function (pmf) 
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The form (1.2) is derived from the transformation (Erdélyi et al, 1953, Vol. I, p. 255) of 

 

      xccaxxca c ;-2  ,1  ;, 1    . 

 

Note that (1.1) is the beta prime distribution with scale parameter 1/ b . It is also known as 

the inverted beta distribution and is a Pearson Type VI distribution.  

 

The GLSD has pmf 
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Kempton’s (1975) interest was in 

the derivation of the GLSD for modelling 

species abundance where the frequency 

count data is characterized by an 

extremely long tail. However, there was 

no discussion on the properties of the full 

beta model. This full beta model (FBM) 

as a mixed Poisson distribution is of 

interest on its own because mixed 

Poisson distributions is an important class 

of distributions for the statistical analysis 

of over-dispersed (variance exceeding the 

mean) count data. A comprehensive 

survey of mixed Poisson distributions 

was given by Karlis and Xekalaki (2005), 

and Gupta and Ong (2005) reviewed the 

applications of these mixed distributions 

to very long-tailed count data. 

Ong (1995) and Ong and 

Muthaloo (1995) examined the 

computations of probabilities by three-

term recurrence relations of Kempton’s 

(1975) GLSD and other related 

distributions (Tripathi, Gupta and White, 

1987). These distributions have the 

interesting feature of being able to fit very 

long-tailed frequency data. The 

probability recurrence relations derived 

by Ong (1995) for the FBM and the 

GLSD to facilitate computations are 

respectively
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for 2k . The stability of the recurrence 

formulae in computation was discussed. 

A recurrence is said to be stable if the 

round-off errors do not grow relative to 

the size of the required function. 

Recurrence relations (1.3) and (1.4) are 

stable in the forward direction at a certain 

value of k  onwards (see Ong, 1995, p. 

265). In other words, starting the 

recurrence from this k  onwards will give 

reliable computed probabilities compared 

to starting from 0k . This feature of the 

recurrence relations (1.3) and (1.4) makes 

their implementation in a computer 

routine difficult since this particular k  has 

to be determined before the recurrence 

formula can be used. This problem of 

determining k  such that (1.3) and (1.4) 

can be used safely becomes acute if it is 

employed in a numerical optimization of 

the (log) likelihood function. In this 

situation, a value of k  has to be 

determined for every point  bqp  , ,  of 

the parameter space. 

 

The objectives of this paper are to 

(i) derive important properties of the 

generalized NB distribution like infinite 

divisibility and unimodality, (ii) 

consider the implementation of the 

recurrence relations (1.3) and (1.4) 

based upon a heuristic approach of 

selecting k  and (iii) illustrate the 

versatility of the FBM in fitting not only 

very long-tailed data (Kempton, 1975, p. 

36) but also short-tailed and moderately 

long-tailed data. Since (1.3) and (1.4) are 

similar, the discussion would be 

restricted to the recurrence relation (1.3). 

 

The organization of the paper is as 

follows. Section 2 gives several 

probabilistic properties of the FBM. A 

heuristic method for testing forward 

stability of three-term recurrence 

relation for probabilities is presented in 

Section 3. Section 4 shows the versatility 

and superiority of the FBM in empirical 

modelling of count data. Concluding 

remarks are given in Section 5. 

 

 

Properties of the Full Beta Model 
 

In this section we give the 

properties of the FBM. These properties 

are consequences of the generalized NB 

as a mixed Poisson distribution. To 

facilitate the presentation, some 

properties of the beta prime distribution 

with pdf (1.1) are first presented.

 

2.1 Some properties of beta prime distribution 

 

The beta prime distribution has k-th moment given by 
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The moment generating function (mgf) is  
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where
,

,

m nG   is the Meijer G-function defined by 
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The definitions of infinite divisibility and log-concavity are presented next. 

 

Infinitely divisible distributions constitute an important family of distributions in 

modelling (Steutel, 1983). A distribution function F  is said to be infinitely divisible if, for 

every Nn ,  

nnnn

d

XXXX ,2,1, ..   

 

where F is the distribution of X and 
nnnn XXX ,,2,1, ,..,  are independent and identically 

distributed. 

 

A function f  is said to be log-

concave on the interval I if the function 

 log f  is a concave function on I. Log-

concave distributions and the various 

preservation properties of log-concavity 

have important applications in many 

areas (Bagnoli and Bergstrom, 2005; 

Walther, 2009).  

 

 The beta prime distribution has 

the following important properties, 

summarized in the following theorems. 

 

Theorem 1: The beta prime distribution is 

infinitely divisible and log-concave. 

 

Proof: For infinitely divisibility see 

Steutel and van Harn (2003, Appendix B, 

section 3). 

 

 Log-concavity is proven in 

Borzadaran and Borzadaran (2011, Table 

2, p. 209) for the Pearson Type VI 

distribution with restrictions on the 

parameters. 

 

 Various reliability properties of 

the beta prime distribution are a 

consequence of the log-concavity 

property (see Borzadaran and 

Borzadaran, 2011, p. 205). In particular, 

the beta prime distribution is strongly 

unimodal. 

 

2.2 Properties of the full beta model 

 

 Since the FBM is a mixed Poisson 

distribution, a number of properties can 

be inferred directly from the mixing 

distribution, that is, the beta prime 

distribution. The probability generating 

function (pgf) of the FBM is obtained 

from the mgf of the mixing distribution 

by the formula about mixed Poisson 

distribution (see, for example, Karlis and 

Xekalaki, 2005, p.38) and is given as

 

                                    1XG z M z  . 
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We get, from (2.2), 
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The rth factorial moment  r
 of the FBM corresponds to the rth moment of the beta prime 

distribution (2.1)  
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This formula has been derived by Ong 

and Muthaloo (1995, p. 936) through the 

evaluation of an integral. 

 

Theorem 2:  The FBM is infinitely 

divisible. 

 

Proof: If the mixing distribution in a 

mixed Poisson distribution is infinitely 

divisible, the mixed Poisson distribution 

is also infinitely divisible (Maceda, 

1948). 

 

Furthermore, Theorem 2 connects a 

mixed Poisson distribution to a 

compound Poisson distribution. 

 

Theorem 3: The FBM is a compound 

Poisson distribution with GLSD whose 

pgf is

  

      
1

1 log , log 0X XQ z G z G


     . 

 

Proof: A discrete infinitely divisible 

distribution is a Poisson-stopped sum 

(compound Poisson) distribution (Feller, 

1968). A compound Poisson distribution 

has pgf of the form (Steutel and van Harn, 

2003, Theorem 3.2)

 

                               exp 1XG z Q z   

 

where  Q z  is the pgf of the summand distribution (cluster distribution). For the FBM, 

based on (2.3) and equation (3.4) of Steutel and van Harn (2003),  Q z is given by  

 

                                
1

1 log , log 0X XQ z G z G


     . 

 

This is the pgf of Kempton’s generalized 

log-series distribution, GLSD. 

 

Theorem 4: The FBM is unimodal. 

 

Proof: If the mixing distribution in a 

mixed Poisson distribution is unimodal, 

the mixed Poisson distribution is also 

unimodal (Holgate, 1970). 

Computation of Probabilities by 

Recurrence Relation 

 

There are a number of heuristic 

approaches (Press et al., 2007) to 

determine the stability of the recurrence 

relations in the forward direction. One 

easy-to-implement method is the 

following: Consider the recurrence 
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relation which may be started (first) with 

initial values 1 and 0 and then (second) 

with 0 and 1 (Press et al., 2007, p. 220). 

Ten to twenty terms are generated for 

each of the two starting conditions. If the 

differences between the corresponding 

members of the two sequences are of 

absolute value less than 10, then the 

recurrence is stable. If the differences 

increase slowly, the recurrence is mildly 

unstable but tolerable. Note that in this 

method of testing stability, the actual 

starting values of the functions are not 

required. This approach may be used to 

determine k  such that (1.3) is stable 

from this k  onwards at a particular point 

(p, q, b) in the parameter space. To 

illustrate this heuristic approach, a 

numerical example is given in Table 1 

below. The value of k for each column is 

the starting value of the recurrence 

formula and the entries in Table 1 are the 

absolute difference of the two generated 

sequences. Table 2 reproduced from 

Ong (1995, Table I) gives the actual 

values of the probabilities and values 

computed from different starting points 

of the recurrence relation (1.3). It is 

apparent from a comparison of Tables 1 

and 2 that the heuristic rule is 

conservative for this example since at 

4k  the recurrence relation (1.3) is 

already stable.

 

 

Table 1. Illustration of heuristic method for recurrence formula (1.3) with  

42.2p , 02.5q 072.0b  

     k          1                2           4        8     9 

    0 1 .  .   

    1         25.76         1        .   

    2 

    3 

    4 

       153.11 

       740.72 

     2784.96 

     13.55 

     59.02 

   226.99 

       . 

       . 

     1 

  

    5 

    6 

    7 

    8 

     8657.54 

   22799.10 

   52018.42 

  104480.32 

   701.62 

  1850.85 

  4220.39 

  8478.76 

     6.75 

   18.61 

   50.87 

  114.59 

 

 

 

   1 

 

    9  187175.29  15188.00   231.33   3.03  1 

   10 

   11 

   12 

   13 

   14 

   15 

   16 

   17 

   18 

     . 

     . 

   21 

 302245.26 

 443806.09 

 596984.88 

 740341.88 

 851113.55 

 911427.93 

        . 

        . 

        . 

 

       

 24526.44 

 36012.70 

 48443.26 

 60075.49 

 69064.70 

 73958.51 

 74088.28 

        . 

        . . 

  413.49  

  668.44 

  980.90 

 1319.96 

 1636.52 

 1881.74 

 2014.78 

2018.54 

1898.54 

      . 

      . 

      . 

  4.61 

  8.10 

 11.36 

 15.72 

 19.14 

 22.29 

 23.63 

  23.87 

  22.29 

     . 

     . 

  13.23  

 

 2.60 

 3.55 

 5.73 

 7.28 

 9.38 

10.50 

11.48 

 11.31 

 10.80 

    . 

    . 

  6.26 
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The heuristic method discussed 

above is easy to implement on a 

computer. This method has been applied 

over the parameter space  bqp  , ,  of 

practical interest for 50  ,  ,0  bqp  in 

steps of 0.1. It is found in general that 

(1.3) is stable at a starting point of 

10k  when 25 , , bqp . If any of the 

parameters bqp or     ,  is greater than 25, 

the starting point is k > 10.  On the basis 

of this empirical evidence, the following 

approach may be adopted in computing 

probabilities of the FBM. 

 Test the recurrence relation (1.3) 

for stability at starting points 

10 ..., ,2 ,1 ,0  tk .  If the starting point 

is 10k , compute  kP  for k < 10 by 

numerical integration or Monte Carlo 

integration (Ong et al., submitted) and 

use (1.3) for k > 10; otherwise compute 

all the probabilities by numerical 

integration or by other methods. 

 

Remark:   In fitting short-tailed 

frequency data, choose t smaller than 1.

 

Table 2. Forward stability: Recurrence relation (1.3) (Ong, 1995) 
 

k  )()1( kP  )()2( kp  )()3( kp  )()4( kp  

 

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

   

37 

38 

 

0.43594736  (-1)** 

0.72244871  (-1) 

0.85726426  (-1) 

0.88758952  (-1) 

0.85540095  (-1) 

0.79017278  (-1) 

0.71070417  (-1) 

0.62822133  (-1) 

0.54898205  (-1) 

0.47613877  (-1) 

0.41097606  (-1) 

0.35370453  (-1) 

 

0.11313668   (-2) 

0.101706997 (-2) 

 

0.43594736  (-1)* 

0.72244871  (-1)* 

0.85721075  (-1) 

0.88789187  (-1) 

0.85392469  (-1) 

0.79571268  (-1) 

0.69347405  (-1) 

0.67358895  (-1) 

0.45465451  (-1) 

0.68405032  (-1) 

0.38501577  (-2) 

0.95516290  (-1) 

 

0.11392617  (-2) 

0.10137907  (-2) 

 

 

 

0.72244871  (-1)* 

0.85726426  (-1)* 

0.88759027  (-1) 

0.85539795  (-1) 

0.79018457  (-1) 

0.71066791  (-1) 

0.62831693  (-1) 

0.54876371  (-1) 

0.47657750  (-1) 

0.41019025  (-1) 

0.35497357  (-1) 

 

0.11313836  (-2) 

0.10170632  (-2) 

 

 

 

 

 

0.85540095  (-1)* 

0.79017278  (-1)* 

0.71070417  (-1) 

0.62822113  (-1) 

0.54898205  (-1) 

0.47613877  (-1) 

0.41097607  (-1) 

0.35370453  (-1) 

    

0.11313668    (-2) 

0.101706997  (-2) 

        ,42.2p              02.5q ,                 072.0b   

*   initial values for recurrence,    **  0.43594736  (-1) = 0.43594736  x 110   .  

 

)()1( kp  = probabilities computed by numerical integration 

)()2( kp  = probabilities computed by (1.4) stating at 0k  

)()3( kp  = probabilities computed by (1.4) starting at 1k  

)()4( kp  = probabilities computed by (1.4) starting at 4k  
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Examples of Data Fitting 

 

Kempton (1975, p.36) fitted the 

FBM to a very long-tailed frequency data 

set, that is, the species frequency 

distribution of insect catches. To 

exemplify the fit of the FBM to very 

short-tailed and moderately long-tailed 

frequency data, the following data sets 

have been considered: 

 

(i) counts of red mites on apple leaves 

(Garman, 1951),  

(ii) claims in automobile insurance (Bhati 

et al., 2015), 

(iii) hospital stays (Gomez-Deniz and 

Calderın-Ojeda, 2015), and 

(iv) number of sickness absences for men 

(Taylor, 1967). 

 

The automobile insurance claims 

data is short-tailed whereas the data on 

number of sickness absences for men is a 

moderately long-tailed frequency data. 

The parameters are estimated by 

maximum likelihood estimation via 

numerical maximization of the likelihood 

function. The results of the fit as judged 

by the chi-square values are presented in 

Tables 3 to 6. For the counts of red mites, 

the FBM fit as well as the non-central 

negative binomial (NNB) distribution 

(Ong and Lee, 1979), which is another 

extension of the negative binomial 

distribution. Table 4 displayed the fits for 

the number of claims in automobile 

insurance and compared the FBM with 

the generalized Poisson-Lindley (GPL) 

distribution of Bhati et al. (2015). The 

FBM fit is clearly better.  For the hospital 

stays data (Table 5) fitted by Gomez-

Deniz and Calderın-Ojeda (2015) to a 

generalized geometric distribution, the 

FBM again fits much better. The FBM is 

compared to the Poisson-inverse 

Gaussian distribution (Sichel, 1971) for 

Taylor’s data in Table 6; there is an 

overall improvement in fit.  

 

Table 3. Counts of red mites on apple leaves )041.0ˆ ,729.38ˆ ,180.1ˆ(  bqp  

No. of  mites      

per  leaf 

Leaves 

observed 

Negative 

binomial 
NNB   2  

(Ong and Lee, 1979) 

 

FBM 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

 

70 

38 

17 

10 

9 

3 

2 

1 

0 

 

64.49 

39.03 

20.96 

10.97 

5.66 

2.90 

1.48 

0.75 

0.76 

 

69.98 

35.66 

20.75 

11.45 

6.06 

3.11 

1.55 

0.76 

0.68 

 

69.94 

36.93 

19.68 

10.59 

5.75 

3.14 

1.74 

0.97 

1.27 

Total 150 150.00 150.00 150.00 

2  
 2.93 2.45 2.45 

p-value  0.9387 0.9640 0.9640 
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Table 4. Number of claims in automobile insurance ( 40.19ˆ ,38.3ˆ ,98.8ˆ  bqp ) 

Number of 

claims 

Claims 

Observed 

NB GPL (Bhati et al., 2015) FBM 

0 1563 1566.4 1564.50 1563.94 

1 271 261.5 264.25 267.54 

2 32 40.146 39.69 36.36 

3 7 5.99 5.59 5.57 

4 2 0.88 0.87 1.11 

Total 1875    

2  
 3.60 3.49 1.64 

p-value  0.4628 0.4794 0.8016 

 

Table 5. Hospital Stays Data )63.0ˆ ,91.3ˆ ,54.0ˆ(  bqp  

Number of days Days 

Observed 

NB Generalized Geometric 

(Gomez-Deniz and Calderín-

Ojeda, 2015) 

FBM 

0 3541 3544.63 3539.81 3539.73 

1 599 583.35 606.12 605.96 

2 176 177.5 161.2 165.08 

3 48 62.12 56.53 55.04 

4 20 23.35 23.06 21.18 

5 12 8.81 10.2 9.14 

6 5 3.52 4.72 4.34 

7 1 1.32 2.24 2.23 

8 4 0.44 1.08 1.22 

Total 4406    

2  
 34.73 12.05 6.89 

p-value  0.00003 0.1490 0.5485 

 

Table 6. Number of sickness absences ( 05.0ˆ ,14.6ˆ ,20.2ˆ  bqp ) 

Number of 

absences 

Observed 

Frequency 

Poisson-inverse Gaussian 

(Sichel, 1971) 
 

FBM 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
14 

15 

31 

35 

55 

59 

49 

59 

41 

38 

32 

31 

24 

22 

22 

17 
16 

10 

20.1 

43.5 

57.3 

60.7 

57.7 

51.9 

45.3 

38.9 

33.3 

28.4 

24.2 

20.7 

17.7 

15.2 
13.1 

11.4 

28.03 

44.71 

52.32 

54.03 

52.22 

48.51 

43.94 

39.12 

34.43 

30.07 

26.11 

22.58 

19.49 

16.80 
14.47 

12.46 
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16 

17 

18 

19 

20 

21 

22 – 23 

24 – 25 

26 – 27 

28 – 30 

31 – 35 

36 – 48 

8 

8 

11 

4 

3 

6 

9 

4 

7 

6 

8 

8 

9.8 

8.6 

7.5 

6.5 

5.7 

5.0 

8.3 

6.4 

5.1 

5.7 

6.1 

8.9 

10.73 

9.25 

7.98 

6.90 

5.97 

5.17 

8.39 

6.36 

4.85 

5.26 

5.26 

7.58 

Total 623 623.00 623.00 

2  
 19.81 15.33 

p-value  0.8386 0.9645 

 

CONCLUDING REMARKS 

 

Some important probabilistic 

properties, like infinite divisibility, have 

been derived for Kempton’s full beta 

model. Although the probability mass 

function is complicated, its three-term 

recurrence relation facilitates 

computation and therefore its 

applications in statistical analysis. 

However, numerical stability of the 

recurrence formula is an issue. A 

heuristic method for testing forward 

stability of a three-term recurrence 

relation for probabilities have been 

presented. This heuristic rule allows the 

determination of the point where the 

recurrence relation should be started; it 

is easy to implement on the computer 

and does not require actual starting 

points of the recurrence formula. The 

implementation for the GLSD is similar.  

Four examples of data fitting for the 

FBM are also given to demonstrate its 

versatility and superiority to fit both 

short and moderately long-tailed data. 

The statistical literature is full of 

extensions and generalizations of basic 

count models like the Poisson and 

negative binomial distributions. It is 

shown that an existing model, the full 

beta model, can be used as a good 

empirical model. 
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