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ABSTRACT  In modelling environment processes, multi-disciplinary methods are 

used to explain, explore and predict how the earth responds to natural human-induced 

environmental changes over time. Consequently, when analyzing spatial processes in 

environmental and ecological studies, the spatial parameters of interest are always 

heterogeneous. This often negates the stationarity assumption. In this article, we proposed the 

adaptive parametric nonstationary covariance structure for spatial processes. The adaptive 

tuning parameter for this model was also proposed for nonstationary processes. The flexibility 

and efficiency of the proposed model were examined through simulation. A real life data was 

used to examine the efficiency of the proposed model. The results show that the proposed 

models perform competitively with existing models. 
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1. INTRODUCTION 

 

In modelling spatial processes in 

environmental, agricultural and 

meteorological processes, the parameters of 

interest are not always known. However, 

most methods for obtaining such 

measurements assumed stationarity 

(Cressie 1993) which often negates the 

measurement obtained in environmental 

and ecological processes. For examples, the 

dispersion of the transportation of 

atmospheric pollutants, topographic effect, 

and weather patterns are good cases of 

nonstationary spatial processes where 

stationarity is assumed. Also, most 

environmental processes exhibit spatially 

nonstationary covariance structure over 

sufficiently large spatial scales (Fuentes,

  

2001). However, several studies like 

Fuentes (2002), Haas (1990a) and Haas 

(1990b), Guttorp and Sampson (1994)and 

many others have shown that 

meteorological processes such as; synoptic 

wind patterns and orographic effects often 

exhibit nonstationary covariance. 

Consequently, however, the understanding 

of the observed values is needed to predict 

values at unobserved location. Thus, the 

nonstationary processes observed in these 

spatial processes rely on the covariance and 

variogram techniques. 

 

Let nxxx ,, 21  be spatial locations 

and  ixY  the space domain, where
dx 

.Then, the realization say,  ixY is 

nonstationary   if             either

    

https://doi.org/10.22452/mjs.vol39no2.4
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     njijixYxYCov ji ,2,1,,,  for 

ix and 
d

jx  depends on the locations ix

and 
jx  or   ixYE varies over the random 

field. However, but the covariance function 

in these locations changes with locations.  

 

In spatial statistics, spatial 

processes were considered in Sampson and 

uttorp (1992) to be nonstationary. They 

represented the covariance of the processes 

as a latent space. Higdon et al. (1999) 

proposed a nonstationary covariance 

function using a convolution of two kernel 

functions. This was further expanded by 

Paciorek and Schervish (2006) by using the 

square root of the quadratic form of the 

spatial covariance. A moving window 

approach was proposed in David and 

Genton (2000). Hyoung-Moon et al. (2005) 

and Parker et al. (2016) regrouped the 

heterogeneous spatial processes in the same 

location into sub-regions whose structures 

were homogeneous in both the mean and 

covariance. Bornn et al. (2012) proposed a 

nonstationary covariance in space using the 

concept of dimension expansion method. 

This method was further enhanced in Shand 

and Li (2017) using a thin-plate spline 

method to obtain the nonstationary 

covariance in space and time. Jaehong et al. 

(2017) proposed isotropic and 

nonstationary covariance using a 

differential operator approach. Fuentes 

(2002) proposed a nonstationary spatial 

process using the spectral density 

convolution approach. Higdon (1998) 

proposed a convolution based approach 

nonstationarity covariance. Ingebrigtsen et 

al. (2014) proposed covariance structure in 

nonstationary processes through stochastic 

partial differential method. This method 

allows the explanatory variables to be 

added to the structure. A linear mixed 

model approach was proposed in Haskard 

et al. (2010) to determine the mean and 

covariance of the nonstationary process of 

soil potassium on gamma radiometry.  

Lasso regression approach was proposed in 

Hsu et al. (2012) to select the basis function 

in modelling the nonstationary covariance. 

Huser and Genton (2016) proposed a 

nonstationary max stable dependence 

model and obtained the covariance using 

the pairwise likelihood method. Schmidt et 

al. (2011) proposed nonstationary 

covariance by using latent space model by 

projecting the C dimension in Sampson and 

Guttorp (1992) to 2D correlation structure 

using the covariate in the covariance. Some 

examples of latent space models are found 

in Meiring et al. (1998), Le et al. (2001), 

Sampson et al. (2001), Damian et al. (2003) 

and Guttorp et al. (2007).  More so, 

nonstationarity as a sum of the stationary 

process and basis function with its 

coefficients as a departure from 

nonstationary were proposed in (Nychka 

and Saltzman 1998, Nychka et al. 2002). 

Several Bayesian methods for solving 

nonstationarity problem have been 

developed over the years in Katzfuss 

(2013), Katzfuss and Cressie (2012), but 

Risser and Calder (2015) proposed MCMC 

model for posterior distribution. 

 

Motivated by the articles researched 

and based on the results obtained from 

existing spatial literature research such as 

the nonparametric estimation of spatial and 

space-time covariance function, non-

parametric method of estimating semi-

variograms of isotropic spatial processes, 

and the estimation of nonstationary spatial 

covariance structure, we proposed adaptive 

parametric nonstationary covariance for 

spatial processes whose variability depends 

on the lags between the spatial processes. 

Its major characteristic was that more 

parameters were added to make it more 

flexible. This model aims to attract wider 

range of application in agriculture, 

environmental sciences, hydrology and 

other related areas. 
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This article is organized as follows: 

Section 2 discusses the review of spatial 

covariogram and semi-variogram. In 

Section 3, we discuss the adaptive 

parametric model and the adaptive 

parameter for optimizing the adaptive 

model. Simulation of the formulated 

models was examined in section 4 together 

with a real life application. Section 5 

contains the conclusions. 

 

 

2. REVIEW OF SPATIAL 

DOMAIN 

 

 A fundamental notion underlying 

most of the current modeling approaches 

were that, the spatial covariance of the 

environmental processes can be regarded as 

approximately stationary over small spatial 

regions. This notion describes spatially 

varying isotropic covariance structure. 

Thus, for a spatial realization  ixY , the 

semi-variogram is defined as

                                     
      

njni

jixYxYExx jiji

,,3,2,1.,,3,2,1

,,
2

1
,

2

 


                             (1) 

 

However, in Matheron (1963), Equation (1) 

is said to be second order stationary process 

if the spatial covariance function is given as 

                                             

                                              hxYxYCovhCov  , ,                             (2) 

 

where h  is the lag and x the location. 

However, the covariance between any two 

locations says 1x  and 2x in Equation (1) 

depends on the spatial lag vector 

connecting them. Shand and Li (2017) 

consider the exponential covariance 

function for the space domain as  

      hxYxYCov sji   exp, 2
, for

  

 

                                        njniji ,,3,2,1.,,3,2,1,                                        (3) 

 

 

where s  is the range parameter. Then 

 ji xxh  and hh   where b  is a 

Euclidean norm of vector b  and 2 is the 

variance of the process. 

 

 

3. METHODOLOGY 

 

In this section, a new adaptive parametric 

nonstationary   spatial  covariance    is

  

proposed.  

 

3.1 Proposed adaptive parametric 

nonstationary spatial covariance 

 

Let nxxx ,,, 21  be the spatial locations in 

domain d  and      nxYxYxY ,,, 21   the 

spatial processes in the spatial locations. 

Then, the nonstationary spatial process is 

expressed as

                             iiii

T

i xYBxmxY  1  nifor ,,3,2,1           (4) 
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where  i

T xm is the cross covariance 

between observed and unobserved 

locations, iB is the covariance vector 

between the processes at locations s

ix ' , iY is 

the column vector of the random process, 

and  ix is the error term. 

 

The spatial residual from Equation (4) can 

be expressed as

 

                                           

      
      
      11

1

2

2











i

T

ii

T

ii

T

i

iii

T

i

ii

T

BYxmxmYBE

xYxmYBE

xYxYEE 

                                          (5) 

 

Spatial processes vary from one 

location to another depending on the 

distance between the processes. However, 

to obtain optimal value of spatial process at 

unobserved location, the distance is 

penalized. Thus, an optimization problem is 

set up by minimizing the objective of 

Equation (4) as 

                           

                                  .,,3,2,1,01 niforYBxmxY iii

T

i                                 (6) 

 

Subject to the constraint 

 

                                                  .,,3,2,101 niBi           (7) 

 

However, due to over fitting and high 

dimensional of the data analysis, using 

Karush-Kuhn-Tucker technique, spatial 

minimization problem of Equations (6) and 

(7) is given as

 

                                
     

 1,0

,
2

2

1
2

2

11



 

i

iiiii

T

ii BYBxmxYBL




                               (8) 

 

where, i are 1n  vectors of adaptive 

tuning parameters that are data dependent, 

such that 0i . The values of the adaptive 

parameters shrink the spatial regression 

equation coefficient towards zero and add 

some spatial bias that reduces the 

nonstationary covariance of the estimator. 

While 2 -norm is used to keep the spatial 

equation rotationally invariant. 

 

Thus, for computational purpose, 

Equation (8) can be expressed as

                              

                                                

     

      
     

  2

2

,

11

11

1

1

















i

T

ii

i

T

ii

T

ii

T

i

iii

T

i

ii

T

i

BB

BYxmxmYB

xYxmYB

xYxYBL





                                           (9) 
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Taking partial derivative of Equation (9) with respect to 1

iB and equating to zero, we have 

                                   

    

   
1

1









ii

i

T

ii

T

ii

iii

B

BYxmxmY

xYxmY



                                                      (10) 

Substituting Equation (10) into Equation (5) we have the adaptive parametric model as                    

 

                                             

      
       
      11

111

2

2











i

T

ii

T

ii

T

i

iii

T

ii

T

ii

T

i

ii

T

BYxmxmYBE

BBYxmxmYBE

xYxYEE





                             (11) 

          

 

where           xxxYxYEBYYE iii

T

i

T

ii ,,,, 1  
and by symmetric property of a matrix, we 

have the proposed adaptive parametric  model for nonstationary spatial covariance (AP 1) for 

location x as 

                                          
       

  niBB

xmBxmxxxx

i

T

ii

iii

T

iiAP i

,,3,2,12

,,

11

12

1












       (12) 

 

where i is the variance of  xY i or possibly the sill. 

 

3.2 Proposed adaptive parameter for generating optimal model 

 

In this section, we shall propose the adaptive parameter for generating the optimal model. Let  


 


n

i

n

j

ijB
1 1

 and 0i such that





 



n

i

n

j

ijB
1 1

 

Let the adaptive parameter at location zero be 

 

                                     011
1 11 1

0 






  








n

i

n

j

ij

n

i

n

j

ij BB

                              (13) 

  



 Malaysian Journal Of Science 39(2): 51-70 (June 2020) 

56 

 

Now, at some other locations other than zero, we multiply Equation (13) by
1

1
2 n

. Thus, we 

have 

                                                      
 1

1
2


 

n

Bn i
i




                       (14) 

However,  

                                               
 













n

i

i
n

i

i
n

Bn

1
2

1

1
1

1




                                             (15) 

 

Thus, 

                                         

 
ni

Bn

BnB

n

i

n

ij

n

i

n

j

iij

i ,,3,2,1

1
1 1

2

1 1












 

 



                                      (16) 

 

Next, we shall consider some possible fixed values of i . 

 

For 0  Equation (12) reduces to David and William (2002) model. 

 

Now, taking second partial derivative of Equation (9) with respect to 1

iB  and equating 

to zero, we have: 

                                                 ii

TT

iii xmxmYY ;                                            (17) 

 

but i cannot be negative. Thus, taking the norm of both sides we have 

 

                                             ii

TT

iii xmxmYY ,                                             (18) 

 

Hence, substituting the value of i   into  Equation (12) we have 

 

                           

       

     
nji

BBxmxmYYE

xmBxmxxxx

i

T

iii

TT

ii

iii

T

iii

,,3,2,1,

2

,,

11

12











                                         (19) 
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On simplifying Equation (19), where           xxxYxYEBYYE iii

T

i

T

ii ,,,, 1  
and by 

symmetric property of matrix, we have the parametric spatial covariance model (PM 1) for the 

location x as 

                                 

                                    
       

ni

xmBxmxxxx iii

T

iiPM i

,,3,2,1

3,, 12

1



 

.

                                      (20) 

Otherwise, for 1i   Equation (12), the parametric spatial covariance model (PM 2) for the 

location x  as 

                                    
       

  niBB

xmBxmxxxx

i

T

ii

iii

T

iiAP i

,,3,2,12

,,

11

12

1












                                         (21) 

In the above cases, spatial processes in the 

neighborhood were used to predict the 

variable at unsampled location. Now, 

suppose the processes available are not 

within the neighborhood, we shall 

formulate a model on how such variables 

could be krig.

 

3.3 Proposed parametric continuous kriging for nonstationary spatial covariance model 

If the locations x and s are far away from the unobserved site, then, the covariance 

 sxi , approaches zero as the lag h  tends to infinity. Hence, a quantity 







 



n

i

i
i

i y
y

0

; 


  

(where iy  are spatial processes) is introduced to penalize the parameter 
1

IB such that the 

observations within the neighborhood of the target point are used to obtain the predicted 

variables. 

 

Proposition 3.1 

Let    2
exp ii xxxxf   be the distribution function of a spatial process and 

 
 

 







n

j

j

i
i

xxf

xxf
x

1

  be the weight function, then  xi  approaches zero as the  

 

niforxx i ,,3,2,1   

 

Proof  

Since the  xi are weight functions,  we show that their sums equal one. 

 

     

   

  ,exp

,,exp

,exp

2

2

2

2

2

11

Axx

xxfxx

xxfxxxxf

n

n







  

 

  



 Malaysian Journal Of Science 39(2): 51-70 (June 2020) 

58 

 

Let, 

 
 

 
 

 
 

A

xx
x

A

xx
x

A

xx
x

n

n

2

2

2

2

2

1

1

exp
,

,
exp

,
exp
















 

Hence, 

 

                                        

 
   

 
A

xx

A

xx

A

xx
x

n

n

i

i

2

2

2

2

1

1

exp

expexp

















             (22)
 

Clearly, 

                                                                 .1
1




n

i

i x
                                     (23) 

 

It is clear from the proposition (3.1) that numerous sampled values are not needed to 

predict a variable at unsampled location. Thus sample kriging variance, varK  for the spatial 

process can easily be obtained in Gilmour et al. (2004) by: 

                                              



n

i

iiii xxxK
1

2

var ,                                                 (24) 

Next, we show that   0xi as  ixx  

Observe that  
 
 








n

j

i

i

i

xx

xx
x

1

2

2

exp

exp
  But    ii xxasxx 0exp

2
. Clearly, 

  .0xi  

The lasso regression equation of Equations (6) and (7) can be expressed as 

                                         

     

     

     Tiiiiiiii

T

i

T

i

ii

T

ii

T

i

T

i

T

i

ii

T

i

BBBYBxmxY

YBYxmxmBY

xYxYBL

1111

11

1

22

,,

















                                (25) 

For some     nwhere iii  1,1.0,1,0  is the vector of penalty. 

The partial derivative of Equation (25) with respect to 1

iB and equating to zero gives   

                      

                                                 
   

    ii

T

i

T

i

iiiiii

T

i

T

i

YxmxY

BYBxmxmY



  11 2 
                                        (26) 
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However, Substituting equation (26) into (5), we have 

 

                                   

      
       
      11

111

2

22











i

T

ii

T

ii

T

i

iiiiii

T

i

T

i

T

i

ii

T

BYxmxmYBE

BYBxmxmYBE

xYxYEE





             (27) 

 

On simplifying, the proposed parametric continuous Kriging for nonstationary spatial 

covariance model for the location x can be expressed as 

 

                                
       

  niBB

BxmBxmxxxx

T

iii

iiiii

T

iicki

,,3,2,12

2,,

11

112













.

             (28) 

 

 

4. SIMULATION SET UP 

The behavior of the nonstationary 

covariance of the adaptive covariance is 

investigated by conducting simulation 

studies with the aid of Matlab and R 

software (mySeed 500). Various 

simulations are used for the different 

adaptive models to examine their 

performance. The simulation is performed 

as follows: 

 

 Datasets were generated from 

uniform distribution with n = 5, 10, 20, 25, 

30, 40, 50, 100, 150, 200, 250, 300, 350, 

500, 700, 900, 950, 1000 random sample 

sizes. This is repeated for all the variates

 ixm and 1

iB . More so, we generated n 

random variables from the uniform 

distribution for the following. 

 

(a) Variates  1000,50x , and the 

variates  2000,100y  to obtain the 

square matrix B, 

 

(b) Variates    nxm i ,1  to obtain the 

distance between the observed and 

unobserved  spatial processes. 
 

(c) The assumed model for the 

observed spatial process is obtained as

t1010 , where   nt ,1  is a random 

variable. 
 

 The data generated from the 

uniform distribution are then applied to the 

following models:

 

(i) Spherical model:  

                                     





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3

22

2

1

2

3
1,;




hh
hC Sph                                 (29) 

 

(ii) Gaussian model: 
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(iii) Exponential model: 

                                             











h

hC Exp exp,; 22                                        (31) 

 

(iv) David and Williams (2002) model: 

 

                                                        .,; 22

i

T

ii

T

Nd xmBxmhC                                 (32) 

 

(v) Proposed parametric model 1: 
 

                                                        .3,,2

1 i

T
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T
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(vi) Proposed parametric model 2: 
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(vii) Proposed adaptive parametric model 1: 
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(viii) Proposed adaptive parametric model 2: 
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(ix) Proposed adaptive parametric model 3: 

 

                                        
       

  .22

,,

111

2

 



iii

T

ii

i

T

ii

T

iick

BBB

xmBxmxxxx




                                           (37) 

 

(x) Cherry et al. (1996) Nonparametric model of order 1: 
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(xi) Cherry et al. (1996) Nonparametric model of order 3: 
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(xii) Huang et al. (2011)Nonparametric model modified: 
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(xiii) Paciorek and Schervish (2006) 
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Where  ii x   is the kernel matrix of the covariance matrix of the Gaussian kernel centred 

at ix . 

 The Mean Square Prediction Error (MSPE) was used to evaluate the flexibility and 

performance of the different models with  
 

                                
 
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n

i

n

j

ijij xYxY
n
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1 1

2

2
ˆ1

              (42) 

 

 Each of the sample size are replicated 1000 times. 

  

 

The following abbreviations were used 

in the study: Parametric model (PM 1, PM 

2), Adaptive Parametric (AP 1, AP 2, AP 

3), David and Williams (2002) parametric 

(Nd), Ordinary Kriging model Choi et al. 

(2013) (OK), Exponential (Ex), Spherical 

(Sp) and Gaussian (Ga). Huang et la. (2011) 

(HHC), Cherry et al. (1996) and Shapiro 

and Botha (1991) (CSB), Higdon et al. 

(1999) (HIG) and Paciorek and Schervish 

(2006) (PS). 

 

Figure 1 displays 1000 sampled 

spatial distributions at different locations. 

Figures 2 and 3  are the plots for the 

simulated models showing the adaptive  

and global parameters for covariograms and 

semi-variograms for Exponential, 

Gaussian, Spherical and the David and 

Williams (2002) models.  

 

In Figures 2 through 3, the spatial 

covariance of the adaptive model is smaller,  
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has a bi-covariance with spherical model 

and with skewed covariance. Tables 1, 2 

 

and 3 showed the results of the simulation.

 
Figure 1. Spatial distributions of spatial processes in the various locations 

 

 

Firstly, we consider the 

performance of the models developed when 

the parameters are fixed, then compare it to 

when it is adaptive. A model is fixed if the 

value of the parameters is kept fixed in all 

spatial locations. 

 

In all cases, the adaptive parameters 

in APGa has the smallest standard error in 

MSPE; although the mean seems same for 

all models except for APGa 3 adaptive 

models. The adaptive penalized parameter 

of the adaptive model is smaller than the 

fixed model in all cases. 

 

In Table 2, Nd and PM 2 have same 

spherical standard error in all and the 

smallest spherical standard error. The 

spherical standard error of Nd and PM 2 

increases. The true spherical standard error 

is the largest across all. The spherical mean 

of Nd, PM 1 and PM 2 are same. 

 

In Tables 3, CSB 3 having the 

lowest standard error at order 3. The 

standard error of HIG has the largest  

 

standard error and the smallest mean. The 

HIG and PS tend to zero as the lag 

increases. 

 

 

4. DATA ANALYSIS 

 

 In this section, we prove the 

flexibility and efficiency of the new model 

by using real life data. The data were 

distribution of 35 Sulphate spatial data in 

mg/l at the construction of 

Tuomo/Ogbainbiri oil and gas pipeline 

project in South-South Nigeria. Figures 4 

and 5 show the stochastic semi-variogram 

and variogram of the exponential, spherical 

and Gaussian adaptive parametric models. 

In Figure 4, the nugget effect 00C ; range 

parameter, 70000 and sill of 108. 

 

Table 4 is the summary results of 

the exponential, Gaussian and spherical  

adaptive parametric model. 

 

The adaptive models in Table 4 give 

the lowest values for the standard error in  
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MSPE among all fitted models in Gaussian 

and exponential models except for 

exponential PM 1. Thus, the adaptive 

model is chosen as a better model for the 

data.

 

 

Table 1. Mean and Standard Error (in Parentheses 0510 ) of the Mean Squared Prediction 

Error (MSPE) Comparison of Performance for Fixed and Adaptive Models 

 FIXED Adaptive 

Model     MSPE  opt  
opt  optMSPE  

APEx 1 0.7294  9.955110(958.58) 0.01000  6.0812710(6.6758) 

APEx 2 0.6633  7.096286(958.58) 0.0201  6.0812710(6.4358) 

APEx 3 0.3523 0.9678 7.110231(958.58) 0.0067 0.0190 6.0812870(6.8758) 

APSp 1 0.2887  8.733500(56.509) 0.0050  6.9321000(56.509) 

APSp 2 0.1760  7.437500(56.509) 0.0040  6.9321000(46.329) 

APSp 3 0.1569 0.9978 9.998700(56.509) 0.0029 0.0057 6.9321000(59.329) 

APGa 1 0.3350  6.784226(19.874) 0.0406  4.260120(0.10474) 

APGa 2 0.2883  6.416578(16.474) 0.0337  4.260120(0.10474) 

APGa 3 0.1763 0.5764 4.289605(30.564) 0.0252 0.0106 2.601360(0.10474) 

 

Table 2. Mean and Standard Error (In Parentheses 0510 ) of the Mean Squared Prediction 

Error (MSPE) Simulated Data Comparison for Parametric 

Model Spherical Gaussian Exponential 

OK 1.6e+07(2460) 5.950000000(910) 12.68960000(1220) 

True 191.14(93939) 0.9760000(89.778) 20.8670000(10900) 

Nd 6.9321(5.6509) 426.0103(0.10474) 608.12550(0.95858) 

PM 1 6.9324(50.858) 1.2919e+03(0.943) 1.8382e+030(0.863) 

PM 2 .93210(5.6509) 426.0120(0.10475) 608.1271(0.095863) 
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Table 3. The Mean and Standard Error ( 0510 ) of the MSPE Performance for Some Models 

Model Mean Standard error 

CSB 1 16.9598 0.15123 

CBS 3 16.9913 4.80230 

HHC 8.49170 0.00356 

HIG 6.23220 48198 

PS 7.42400 171400 

 

Table 4. Mean and Standard Error (in parentheses 0510 ) of the Mean Squared Prediction 

Error (MSPE) of Adaptive Models for the Tuomo and Ogbainbiri Oil and Gas Pipeline Data 

Model Gaussian Spherical Exponential 

True 1.92(939000) 2.96(381000) 2.01(208000) 

Nd 0.62(234) 2.53(167000) 1.11(274000) 

PM 1 0.10(0.00212) 1.36(151000) 0.30(287000) 

PM 2 0.62(5.09) 1.92(596000) 1.12(27000) 

AP 1 0.03(4.88) 1.93(592000) 0.11(272000) 

AP 2 0.03(4.88) 1.93(592000) 0.11(272000) 

AP 3 0.01(4.88) 1.93(592000) 0.08(271000) 
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Figure 2. Covariogram Plots for Different Values of Parameters with Various Models 
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Figure 3. Covariogram Plots for Different Values of Parameters with Various Models 
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Figure 4. Semivariogram of Tuoma and Ogbainbiri Oil and Gasline Pipeline Data  

(a) Exponential (b) Spherical (c) Gaussian 

 
Figure 5. Covariogram of Tuoma and Ogbainbiri Oil and Gasline Pipeline Data  

(a) Exponential (b) Spherical (c) Gaussian 

model is chosen as a better model for the data 
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5. CONCLUSION 

 

We have derived the concept of 

locally adaptive model for nonstationary 

covariance spatial processes. The idea 

allows each location to be fitted with its 

own tuning parameters instead of adopting 

a unified turning parameter across all 

locations. Furthermore, this concept 

produces a simple way to obtaining a valid 

nonnegative definite covariance function 

irrespective of a given covariance matrix. 

On comparing the results with existing 

models, the adaptive models have the 

smallest standard error. The proposed 

models produced an estimate for 

nonstationary spatial covariance that are 

better than David and Williams (2002) 

parametric model and other classical 

existing models. 

 

The study developed a new family 

of parametric models for spatial covariance 

function. A closed form solution to the 

family of continuous model for 

nonstationary spatial processes is also 

developed. An adaptive parameter that 

generate the optimal value of the propose 

model was also developed. 

 

The adaptive parametric models 

was implemented in the genetic algorithm 

in Matlab 2017 and R 3.5.1 programs. 
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