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ABSTRACT In this paper a new type of alpha skew distribution is proposed under
Balakrishnan (2002) mechanism and some of its related distributions are investigated. The
moments and distributional properties and some extensions related to this distribution are also
studied. Suitability of the proposed distribution is tested by conducting data fitting experiments
and model adequacy is checked via AIC and BIC in comparison with some related
distributions. Likelihood ratio test is carried out to discriminate between normal and proposed
distribution.
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1. INTRODUCTION Chakraborty et al., 2015). To tackle these
situations Azzalini (1985) discovered the
One cannot undermine the skew-normal distribution by inducting an
applications and the value of normal additional  parameter to introduce
distribution in real life to model the asymmetry in the normal distribution and
symmetric data. Now there are many real is define as follows: A continuous random
life situations which seem to be symmetric variable (r.v.) Z follows skew normal (SN)
but due to influences of other factors they distribution i.e. Z~SN(1) if it has
depart from symmetry (for details see probability density function (pdf) given by
Chakraborty and Hazarika, 2011, and
f,(z24)=24(2)D(42); z,A€R 1)
where, 4 and @ are respectively, the pdf Arold and Beaver (2002) proposed the
and cumulative distribution function (cdf) generalization of the skew normal density
of the standard normal distribution. and studied its properties. The pdf of the
Balakrishnan in 2002 as a discussant in same distribution is
f,(z:4,n) = p(D)[P(12)]"/C,(A); 2,1 <R )
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where, n is a positive integer and
C. (1) =E@"(w)), U~N@O2D. In
particular, if 4 =1the Balakrishnan skew
normal density becomes skew normal
density of Azzalini (1985). Furthermore,
Sharafi and Behbodian (2008) extensively
studied its different forms and properties.
Bahrami et al. (2009) introduced the two
parameter Balakrishnan skew normal
distribution. Yadegari et al. (2008)
discussed  the  generalization of
Balakrishnan skew normal distribution.

f(2)=2h(2)G(2); zeR

Olivero in 2010 developed a new
form of skew distribution which exhibits
both unimodal as well as bimodal behavior

In 2007, Huang and Chen proposed
the method for the construction of skew-
symmetric distributions starting from a
symmetric (about 0) pdf h() by
establishing the concept of skew function
G() which is a Lebesgue measurable
function such that, 0<G(z)<1 and
G(2)+G(-z)=1 Z€R, almost
everywhere. Anr.v. Z is said to be skew
symmetric if its pdf is of the form:

(3)

and named it as alpha skew normal
distribution with the pdf given by:

f(z;) ={A—02z)® +Bp(2)/2+?); Z,x € R 4

Using the same approach of Olivero
(2010), Harandi and Alamatsaz (2013) and
Hazarika and Chakraborty (2014)
explored the alpha skew Laplace
distribution and alpha skew Logistic
distribution respectively. Venegas et al.
(2016) and Louzada et al. (2017) studied
the logarithmic form and bivariate form of
alpha-skew-normal distribution,
respectively. Sharafi et al. (2017)
discussed the generalization of alpha-
skew-normal distribution.

In this article, the main aim is to
propose a new version of alpha skew

normal distribution (known as
Balakrishnan  alpha  skew  normal
BASN, () distribution, wherex eR)

which is flexible enough to adequately
support both uni-modal and bi-modal
behaviors as well as positive and negative
skewness by considering the methodology
advocated by Balakrishnan in 2002 and
some of its basic properties are
investigated. To exhibit the applicability
of the proposed distribution, the two real
life datasets are consider which give better
fitting when compared to some other
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known distributions.

The article is organized as follows. In
section 2, the Balakrishnan alpha skew
normal distribution is defined and some of
its important distributional properties are
discussed. The half Balakrishnan-alpha-
skew normal distribution is defined in
section 3. Section 4 discusses about the
extensions of Balakrishnan alpha skew
normal distribution along with some of its
basic properties. The location-scale
extension, method of moments and
maximum likelihood estimation are given
in section 5. In section 6, some numerical
examples based on real life data are
provided. Finally, the article ended with
conclusions in section 7.

2. BALAKRISHNAN ALPHA SKEW
NORMAL DISTRIBUTION

In this section we introduce the
generalized version of bimodal skew
normal distribution of Olivero (2010) and
proposed Balakrishnan alpha skew normal
distribution.
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Definition 1: A r.v. Zis said to follow generalized bimodal normal distribution if it has the

following pdf
()

z
f(z2)=— : Zz€eR
(2) C p(z); €
where, N is positive even integers and C is normalizing constant. Symbolically, we can write
Z ~ BN(n). The shapes of pdfs with different choices of n are shown in Figure 1.

Remark 1: The pdf in eqgn. (5) has at most two modes and the same has been seen from the

equation f’(z) = 2" (2" —n) o(z)=0 . This equation has only three zero, therefore the pdf in

eqn. (5) have only two modes.

-5

Figure 1. Plots of pdf of BN(n)

Definition 2: Anr.v. Z with the pdf given by
(6)

1 (a1 L. .
fZ(Z’a)_CZ(a)( 7 o )go(z),z,ae

where, C, (ar) =3—2—2, is said to follow Balakrishnan alpha skew normal distribution
+a
with parameter ». We denote it by BASN, () . The plots of the pdfs are depicted in Figure 2 for

different choices of the parameter,, .

fzlz,a)

fz(z a)
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fz(z,a) fz(z a)

Figure 2. Plots of pdf of BASN, ()

It’s obvious to note and check in Figure 2 that BASN, («) iS bimodal When‘a‘ >1.

Remark 2: The pdf of the proposed BASN,(«) distribution is constructed using the formula
1-02)*+1
2+a?

Properties of BASN, («):

) BASN,(0) = (2)

(2), by taking () = and n=2.

i) If @ — *oo, then pdf of Z becomes £, (z) = Z;(p(z) I.e., Z~BN(4)

i) If Z ~BASN,(«),then —z ~ BASN, (—a)
iV) BASN,(«) has at most two modes.

Proof: To show BASN, («) distribution have at most two modes, which is equivalent to prove
that the following equation have three zeros.

[A-a2)’ +0(a??’ - 40’1 -2 2 + 4o +22) p(2)

Df, (z;« 0 7
:(4.2) C, (@) 2+ a?)? )
It is easy to show that the eqgn. (7) has can be depicted from the contour plot of
at most three real zeros because the eqn. (7) given in Figure 3. It is also
(1-az)®>+1=0 Will have two complex observed from the Figure 3 that
roots, 2z° — 4a?z —2a 2% + 4o+ 2z =0 approximately for—0.95< « <0.95;
has three real roots and (z) = 0. The same BASN, () remains unimodal.

s . . - . — . AT

3 3
—10 -5 [ H 10 -15 -1.0 -0.5 0.0 05 1.0 15

Figure 3. The contour plots of the equation Df, (z;a) =0
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Proposition 1: If z ~ BASN, («) distribution then its cdf is given by

a{8—8az +40%(2+12%)-a’2(3+7%) }
C,(ax)(2+a?)’

F, (z,0) = ©(2)+ 9(2) )

where, d(z) is the cdf of standard normal distribution.
Proof: see Appendix A.

The plots of cdf with different choices parameter , is shown in Figure 4.

Fz(z;a)

Figure 4. Plots of cdf of BASN, («)

For —1<a <0(0<a <1), we can say that the standard normal is stochastically smaller (larger)
than BASN, («) as seen in the Figure 4.

Remark 3: In particular, if & — oo then the cdf of BASN, () becomes the cdf of BN (4)and
- . 2

is given by F, (2)=d(2) _@(p(z).

Proposition 2: If z ~ BASN, («) distribution then

—(n+4) 4 2
) 2 )@ (n+4)!+16a (n+2)!+ 16n!
((n+4)/2)! ((n+2)/2)! (n/2)! _
53 , when n is even
. Cola)2+a’)
I=n 2 | | 9)
92 4" (n+3)'+ 4(n+1!
(n+3)/2)! ((n+1)/2)! _
, Wwhen n is odd
Co(@)(2+a?)°

Proof: see Appendix B.
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Remark 4: The expression (9) can be rewritten with the help of Gamma function as

2:{4+(1+n)a’(8+(3+ n)az)}l"(“T”)l when 1 is even
C,(x)T(1/2) (2+a?)?
EZ"={ s
2 2a{2+(2+n)a}(1+3) when 1 is odd
Cz(az)l"(1/2)(2+012)2
2 4
In particular, Ao Loy o A 4 vaz _(2+5a7)(4+3a”)
P E(2) (2+a?) EZ9=5 2+a?) (2+3a?) () (2+a?)*(2+3a?)
E(Zg):—12a(2+5a2) and E(Z%)=35- 48 16

4+8a% +3a" 2+a?) (2+3a%)

Remark 5: By optimizing E(z) and Var(zZ) with respect to & we get the following bounds.
. —1414<E(Z)<1.414
il. 0.972<Var(Z) <4.7966

The same can be easily visualized from Figure 5 and Figure 6.

E(Z) Var(z)
15 5
1“,9 .
: 3
10 5 5 10 “
-0.58 2
-tofy Nab
-14 - -10 -5 0 5 w0
Figure 5. Plot of mean Figure 6. Plot of variance

Remark 6: The expression for skewness (,) and kurtosis (s,) are respectively given by

6 2 4N2
p - 64’ (2 +23a )(ff+15056 )3 and
(8+20a” +6a” +15a")
5, - 3(2+3a%)(32+112a” +144a" + 216a°® + 410a® + 35a™°)
=

(8+20a” +6a* +15a°)?

By optimizing g, and g, with respect to & we get the following bounds.
i. 25359<p3 <0
ii. 6.7684<p3,<3

The same can be easily visualized from Figure 7 and Figure 8.
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F_igure 7. Plot of skewness

Proposition 3: If z ~ BASN, («) distribution then its moment generating function (mgf) is
given by

M, (t)[a't* +6a’t® +3a* —4a’t® — 340t + 8a’t? + 8a” —8at + 4]
C,(a) (2+a%)’

M, (t) = (10)

where, M, (t) is the mgf of standard normal variable.
Proof: see Appendix C.

Proposition 4: The BASN, («) distribution can be represented as a mixture of two components

as given below

a'?® +8a’1* +4 (—4a’z® —8az)
2\2 (D(Z) + 2\2

C,(a) 2+a%) C,(a) 2+a%)

f(za) == o(2) (11)

where the 1% part is a symmetric pdf denoted by SCBASN,(«) With cdf and mgf given
respectively by

a’la’z® +3za° +81]

F(z)=®(z)- z 12
(2) =0(2) @) 9(2) (12)
a’'t* +6a't? +3a" +8a’t? +8a% +4

M, ()= . Im, ) (13)

C,(@)(2+a”)

where, d(z) is the cdf of standard normal distribution.

Proof: see Appendix D.

Remark 7: (i) For a =0 SCBASN,(a) choices of the parameter . one can adopt
becomes standard normal distribution. (ii) the acceptance sampling method with the

SCBASN, (@) can be useful in generating following steps:
random numbers from BASN, («) Stated in I: Generate random number U  from

the next remark Uniform (0,1)
| [I: Generate random number H from

Remark 8: To generate the random number SCBASN, () -
L from BASN, («) distribution for different
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Hi:SetZ=H if y o 1 :((H; , otherwise, step back to | and continue the process.
A f,(H

Where, A = Sup{ :gﬂ = %(3+ 2v/2)and () and f,()are pdf of BASN,()and SCBASN, («)
1

respectively.

3. HALF BASN, () DISTRIBUTION

A half Balakrishnan-alpha-skew normal HBASN, («) distribution truncated below ‘0’ is
given by

[A-at)® +1)°

ot —8a’b+8a? —8ab+4l//(t); t>0 (14)

frta)= 3

where, (t) is the pdf of the standard half-normal distribution and b = \/z
T

This can be considered as a potential life rate functions h, (t;«) of HBASN,(«) can
time distribution. The corresponding be expressed as below
survival function s, (;«) and the hazard

S (ta) = w(t) 2(8—8at +8a’ + 4a’t’ —3a’t — a’t®) - C, () (2 + a?)* ¥ (t)
T —4+a[8b + a(-8+8ab—3a?)]

and

[(1-at)? +1]?
a(-8+8at —8a” — 4at? +3at + &®t3) + C, (@) 2 + &) 2w ()P (1)

hr (ta) =

where, ¥(t) and & (t) are respectively the We have plotted the h. (t;«) for the suitable

cdf and survival function of the standard values of the parameter ., in Figure 9 to
half-normal distribution. study its behavior graphically.
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hy (t a) hr(ta)

----- - @=07 ----- a=1

Figure 9. Plots of hazard rate function of HBASN, («)

It can be observed from Figure 9 that hazard rate function of HBASN,(«a)
the hazard rate is increasing for a <0 distribution assumes different useful
while it assumes bathtub shape for a >0.7. shapes depending on the choice of the
For the values of 0 <a <0.7, the hazard values of the parameter ., and thus has the
rate takes different shapes. Therefore, the potential to be a flexible life time model.

Remark 9: In particular fora =0, HBASN,(«) distribution reduces to standard half-normal
distribution.
4. SOME EXTENSIONS OF BASN,(a) DISTRIBUTION

In this section we briefly discussed some of the possible extensions of BASN, («)
distributions. These extensions are being currently investigated and will be reported later.

4.1. The Bivariate BASN, () Distribution

Definition 3: A random vector z =(z,,z,) has two dimensional (bivariate) BASN, ()
distribution if it has the following pdf

_ _ 2 2
f(z;0,,02,,p) = (A2, —ay2,)" +1] ?,(2);2eR?, a,,a, €R (15)
Clay, a,, p)

Where, C(a,, a,, p) = (2 + a,% + 2 penyar, + a,2)(2 + 3% + 6payar, + 3a,2), aNd @, (2) IS the pdf of

a bivariate normal distribution Nz@o} {1 pB. We denote it by Z ~ BBASN, (&, @, p)
O |p 1

Special cases of BBASN, (a,,,,p):

0] 11
e Ifg,=a,=0,then Z ~ Nz[{0i|, |:p fiD:(oz(Z).
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2 2
e If o, =0, then pdf of z, is L= 2)" +1]

> —¢,(z,) and if o =0, then pdf of z, is
4+8a," + 3,

[(-a, 2, +1P
4+8a,” +3a,’

¢2(22) *

(Z+2)"
mwz(Z), ZeR.

e If Z~BBASN,(a,,, p), then —z ~ BBASN, (-a,,—a,, p) -

e Ife, =a, — oo, then f(Z;al,az,p)z

4.2 A Two- parameter BASN,(e) Distribution

Definition 4: An rv. [ has a two-parameter BASN,(«) distribution with parameters
a,,a, € R, denoted by TPBASN, (o, «,) , If its pdf is

D% (a, 2) D*(r,

) ..
) o(z); zeR (16)

f(za,a,) =

where,

Clay,a,) =32a,a,(2+3a,”) +48a,a, (2 +5a,%) + 4(4 +8a,” +3a,") +8a,” (4 + 24’

+15a,") + 3" (4 + 40a,” +35,");
D% (e, 7) =[A— , 2)? +17%; and D3 (x, 2) =[(L— ez, 2)? +1)? .

Special cases of TPBASN, (o, 2, ) :
o If o, =a,=0,then Z~N(0,1) =p(2).
e If o,=0,thenz ~BASN,(a,)and if o, =0, then z ~ BASN, («,).
(I-az)*+1)*

o If g =a,=a,then f(z;a)= - - -
16+128c“ + 408" +480c” +105¢

5 0(2) = BASN,, ()

8
e If o, =a, -+, then f(z)=12075¢,(z).

e If Z~TPBASN,(a,,a,),then —z ~TPBASN, (-a,,~a,)-
4.3 Balakrishnan Alpha-Beta Skew Normal Distribution

Definition 5: If the pdf of an r.v. Z is given by

)= [(l-az-B7%)+1)

fEa.p Cle f)

0(2); z,a,f€R a7

then we say that Z is distributed according to the Balakrishnan alpha-beta skew normal
distribution with parameters , and g.

where, C(a, ) =4+3a* +60a°B+12a(4+3158%) +a?(8+6304%) +154%(8+69352) . We
denote it by z ~ BABSN,, () -
Special cases of BABSN, () :

80



Malaysian Journal Of Science 39(2): 71-91 (June 2020)

Ifp=0, then we get BASN,(«) distribution and is given by

[Q-az)® +1P
M=c @eray ™

[@-p2°)° +1]°
(4+15/5%(8+6935%))
This equation is known as Balakrishnan beta skew normal ( BBSN, («) ) distribution.

If & = =0, then we get the standard normal distribution.
If a—>tco, then we get the bimodal normal (BN (4)) distribution given by

If =0, thenwe get f(z)= o(z).

4

f(@)=% 0@
If g — +o0, then we get the bimodal normal (BN (12)) distribution given by

12
f(z)=
@) 10395

If Z~BABSN, (a, ), then —z ~ LBABSN, (—a,— f3) -

»(2)-

4.4 Generalization of BASN, (e) Distribution

Definition 6: If the pdf of anr.v. Z is given by

2 2
f(z;a,ﬂ)zwgo(z)cmﬂz); Z,a €R,1>0, (18)
a,

then we say that Z is distributed according to the Generalized BASN, () distribution with
parameters ¢ and A.

Where, C(a, 1) = (2 +4a? +1.5a*) —b(2a®(1—52)S + 4as + 4a°5); & =

A ;b:\F;
1+ 22 b4

¢(z) and ®(Az) are defined above. We denote it by zZ ~ GBASN, (a, 1) -

Special cases of GBASN, (e, 1) :

If «=0,then Z ~SN(1).

If =0, then z ~ BASN, ().

If a=4=0,then Z ~N(0,2).
22
3

4

If & > +o0,then f(z;a,1) > o(2) D(12) -

[A-a2z)® +1)
(2+4a® +15a") -b(2a® + 4a + 4a®)
[(1-az)® +1)°
(2+4a® +1.5a*) —b(2a® + 4o + 4a)

If A —+w,then f(z;a,4) > o(2)1(z>0),

and if 4 —»—co, then f(z;a,4) > o(2)1(z<0),

where, bz\/z and 1(.) is an indicator function.
T

If z ~GBASN, (a, ), then —Z ~GBASN,, (—a,— A) .
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4.6 The Log- BASN,(e) Distribution

In this section, using the work of (Venegas et al., 2016), we present the definition and
some simple properties of log- BASN,, («) distribution.

Letz =e", thenY = Log(Z), therefore, the density function of Z is defined as follows:
Definition 7: If the pdf of anr.v. Z is given by

_[A-ay)’+1

f(z;a) = 7 2>0, R 19

(z;0) C.@)Qra)) oY), 2>0,a€ (19)
then we say that Z is distributed according is_ the pdf of the standard Iog_—normal
to the log- BASN,(«) distribution with distribution. ~ We  denote it by
parameter & . Where, y = Log(z) and ¢(y) Z ~ LBASN,(a)-

Special cases of LBASN, () :

e If o =0, then we get the standard log-normal distribution given by f (z) =M.
z

e If a—>*o0, then we get the log-bimodal normal LBN (4)distribution given by
4

f,(2) =%¢(y>.

e If Z~LBASN,(),then —z ~ LBASN,(—a)-

5. PARAMETER ESTIMATION OF BASN,(a)

If z ~BASN,(«) distribution then Y = z+oZz is the location () and scale (o)
extension of Z and has the pdf is given by

{1—0{3’_/‘)} +1| Ay
1 o e ; (y,u,a)eRand o >0 (20)

Cz(a) 2+ o2

f (Y 0oa)=

Symbolically, we write as Y ~ BASN, («, 1, o) -

5.1. Method of Moments

Lety,,Y,,....Y, be arandom sample of sizndrawn from BASN, (e, 1, o) distribution in
egn. (20) and m,,m, and mgare the first three sample raw moments respectively. Then, the
moment estimates of the three parameters ., o and o are obtained by
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daoc doo
m, = — - = +Mm (21)
1= H 2+t " 2+a® *
, o(16au+24c® ) —c?(4c? +24a’c? +15a*) (22)
m, =u"— 2 2
2+a®)(2+3a’)
_ 2 3,2 _ 2 _ 4 2 3_2
m, = i + 30(Bau” +12a° u” — 4o —24a° uo —15a" uo + 8ac® + 20a°c*) (23)

4 +8a? +3a*

Substituting the value of £ from egn. (21) in eqn. (22) and solving for o2, we get

o2 (M —m*)(2+a?) (2+3a%) (24)
 (8+20a? +6a* +15a°)

Finally, by putting these values of £z and o*in egn.(23), we get the following equation in &

[Cz () dlz (d3d4m1 - 4‘3‘d1dz(ml2 - mz))3 +12a dlz dzz(d3d4m1 - 40‘(:11(:12(”]12 - mz))z(mlz - mz) +
_ 3dl4 dzzds(d3d4m1 - 4adld2(m12 B mz))(mlz B mz)2 +120‘d16 d23d3(m12 B mz)3]
3 C,(a) dlzdssd43

(25)
where,

d,=2+a? d,=2+3a"; d, =2+5a?; d, =4+3a*; and d5 =4+ 240 +156¥4.
Furthermore, the wvalue of Ois parameters  namely, ;2 and o can  be
estimated numerically as the exact solution estimated directly from egn. (21) and eqn.
of the egn.(25) is not easily tractable. Once (24) respectively.
O is estimated, the rest of the two
5.2. Maximum Likelihood Method

Likelihood function:

Let v,,Y,,....Y, be a random sample of size n drawn from BASN, («, 1, o) distribution of
egn. (20), then the log-likelihood function for @ = («, 1, o) is given by

i=1

n 2 n 2
1(0) = ZZIonga[y'#j} +1]nlog(2+a2)nlogo—nlog(2+3a2) —glog (27[)—;Z(HJ (26)
i=1 2 o

Differentiating this eqgn. (26) above partially with respect to the parameters «, 11, and o, the
following likelihood equations are obtained:

A0 _ (y. i

ou 3T 0(1+b )
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M :_E_Zn:_ (y; —p)° +22n: 20y, — )b,

3
(o}

oo o I

= o’(1+b?%)

alo) __n@ba+12a°) Zi_ 2(y, — )b,

oo

where, b, = (1_ M)

o

The solutions of the above system of
likelihood equations gives the maximum
likelihood estimator for 6 = (a, 1, &) which
can be obtained by numerically
maximizing eqgn. (26) with respect to the
parameters @ = (a, u, o). The derivation of

the observed information matrix is also
obtained using numerical procedures.
Initial values for those procedures can be
obtained although the moment estimators.

The log-likelihood function based on a
single observation Y for the parameters
0 = (a, 1,0), is given in Appendix E. The
variance-covariance matrix of the MLEs
can be obtained by taking the inverse of the
Fisher information matrix (1) as given in
Appendix E.

6. REAL LIFE APPLICATIONS:
COMPARATIVE DATAFITTING

Here we have considered two datasets:
the dataset 1 is related to N latitude degrees
in 69 samples from world lakes, which
appear in Column 5 of the Diversity data
set in website:
http://users.stat.umn.edu/sandy/courses/80
61/datasets/lakes.Isp; and the dataset 2 is
the body mass index (BMI) of 202
Australian athletes (Cook and Weisberg,
1994).

We then compared the proposed
distribution  BASN,(a, i,) With the

normal distribution N (., o2), the logistic
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4+8a%+3a*

o(@1+b?)

i=1

distribution  LG(w,p8), the Laplace
distribution La(x, B), the skew-normal
distribution  SN(A4,4,0) of Azzalini

(1985), the skew-logistic distribution
SLG(A, u, B) of Wahed and Ali (2001), the
skew-Laplace distribution SLa(A,x,g) of
Nekoukhou and Alamatsaz (2012), the
alpha-skew-normal distribution
ASN (e, 11, o) of Olivero (2010), the alpha-
skew-Laplace distribution ASLa(c, i, ) Of
Harandi and Alamatsaz (2013), the alpha-
skew-logistic distribution ASLG(«, 1, B)
of Hazarika and Chakraborty (2014), the
alpha-beta-skew-normal distribution
ABSN (a, B, 1,0) and  beta-skew-normal

distribution BSN(p, 1, ) of Shafiei et al.

(2016). The reason behind the choice of the
above distribution for comparison lies in
the fact that the Logistic and Laplace
distributions and their skewed version are
main competitors of the proposed
distribution.

Using R software package GenSA
package version-1.0.3, (Xiang et al., 2013),
the MLE of the parameters are obtained by
using numerical optimization routine. AIC
and BIC are used for model comparison.

Table 1 and Table 2 shows the MLE’s,
log-likelihood, AIC and BIC of the above
mentioned distributions. The graphical
representations of the results taking only
the top three competitors for the proposed
model are given in Figure 10 and Figure 11.
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Table 1. MLE’s, log-likelihood, AIC and BIC for N latitude degrees

in 69 samples from world lakes.

;g{ﬁ?ﬁﬁs—z 7 '] a B logL  AIC BIC
N(u, 02) 45165 9549 - - . 253599 511198 515666
LG(u, ) 43639 - - - 4493 -246.645 497.290 501.758

SN(4,0) 35344 1370 3687 - 243036 492072 498.774

BSN(f,1,0) 5447 552 - 074 242530 491.060 497.760

SLG(4,. ) 36787 -~ 28284 - 6417 -239.053 490.808 490.808
La(u, B) 4300 - - . 5805 -230248 482.496 486.964

ASLG(a i1, f)  49.087 - 086l 3449 -237.351 480.702 487.404

sLa(i,f) 4230 - 0255 - 5943 -236.900 479.799 486.501

ASLa(a i, ) 423 - 0220 5440 -236.079 478.150 484.861

ASN(a,i1,0) 52147 7714 - 2042 - 235370 476739 483.441

ABSN(a.fB.i,0) 4769 715 -~ 172 037 -230.770 469.530 478.480
BASN,(a, ,0) 54265 6559 -~ 1994 -~ 226228 458455 465.158
D.08F
oel — BASN
----- ABSN
004y \ | ASLa
002} ‘\ ----- - ASN

30 40

a0

60

Figure 10. Plots of observed and expected densities of some distributions for N latitude
degrees in 69 samples from world lakes.
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Table 2. MLE’s, log-likelihood, AIC and BIC for body mass
index (BMI) of 202 Australian athletes.

Parameters —»

Distributions$ H J A a B log L AlC BIC
N(u, o2) 22,956 2.857  -- - -~ -498.668 1001.336 1007.953
La(u, ) 22749 - - - 2123 -494.08  992.16  998.7765

BSN (S, i, ) 22528 2694  -- - -0.058 -492.88  991.76  1001.685

ASLa(a, i, ) 22350 - - -0.14 207 -492.601 991.202  1001.127

SLa(A, i, ) 22350 -- 0865 @ -- 2.084 -492.461 990.922  1000.847
LG(u, p) 22787 - -- - 1.529 -491.462 986.924  993.5405

SN(A, 1, 5) 19.969 4.133 2313 - -~ -490.099 986.198 996.1228

ASLG(a,u, ) 21933 - - -0201 1475 -489.094 984.188 994.1128
ASN (a, 1, &) 24834 2653 --  0.994 - -488.69  983.38  993.3048
ABSN(a, B, ,0)  23.998 2853  -- 0817 -0.131 -486.743 981.486 994.7191
SLG(A, 1, B) 20717  -- 1401  -- 1.975 -487.311 980.622  990.5468
BASN,(c, 1, 0) 26482 2706 -  0.971 -~ -484773 975546  985.4708
015}
—— BASN
010} ----- ABSN
3 / -------- SLG
) f! ----- _ ASN
L };:.' .

25

35

Figure 11. Plots of observed and expected densities of some distributions for body mass
index (BMI) of 202 Australian athletes.
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It is found from Table 1 and 2 that the AIC and BIC. The plots of observed and
proposed  BASN,(«, u,o) distribution expected densities presented in Figure 10
provides best fit to the data set in terms of and 11 also confirm our findings.

Remark 10: The observed variance-covariance matrix of the MLEs of the parameters
0= (a,u,0) of BASN,(a,u,0) distribution in dataset 1 and dataset 2 are obtained
respectively, as

R 0.6995 0.1615 0.1395 R 0.1371 0.0327 0.0337
Var —Cov(#) =| 0.1615 0.1350 —0.00455 |& Var —Cov (#) =| 0.0327 0.0199 0.00192
0.1395 -0.00455 0.1349 0.0337 0.00192 0.0175
6.1. Likelihood Ratio Test BASN, («, 1, o) distribution as the best
fitted one to the datasets under
Furthermore,  sinceéN(u,o?) and consideration in terms of AIC and BIC. The
BASN, (a, 11,0)  distributions are nested plots of observed and expected densities
models, the likelihood ratio (LR) test is presented also confirm our findings.
used to differentiate between them. The LR
test is carried out to test the following null There is scope of extending the present
hypothesis Hy,:a=0, that is the sample is work by ConSidel’ing the LOgiStiC and the

. Laplace distributions. Moreover
rawn from 2y; n h . AR
draw 0 N(uo%); against - the logarithmic ~ forms  and  bivariate

alternative H, : o =0, that is the sample is generalizations can also be considered as
drawn from BASN (e, 41.5) - future work.

The values of LR test statistic for the

datasets 1 and 2 are respectively 54.742 and 8. ACKNOWLEDGEMENT
27.79. Both of which exceed the 99%
critical value, that is, 6.635. Thus there is The second author would like to
evidence in support of the alternative acknowledge the fellowship received under
hypothesis that is, the sampled data comes the UGC-BSR Research Fellowship in
from BASN, (a, 1, ), Not from N (u, 52). Science scheme 2014-15, Govt. of India.
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APPENDIX
A: Proof of Proposition 1
F,(2)== c (a)(2+ j;{a“z“ —4a°7% +8a%7% — 8oz + 4}(0(2) dz
_ & [Hz(3+2°) p(2)}+ 3<D(Z)] —42’[{(2+72°) p(2)}]+8a*{- 20(2) + B(2)} -8 (-9 (2)) + 4D (2)
C,(@)2+a’)’
_o(2)[Ba’z-a'z® +8a° +4a’1* -8a’z+8c] . O(2)[3a" +8a* +4]
B C,(@)(2+a?)? (Bar* +8a +4)
o)+ a[8-8az +4a’(2+1*)-a’2(3+12%) ] o(2)
- C,(a)(2+a?)?

B: Proof of Proposition 2

o n 2 2
Whenniseven; g(z") — z A—az)” +1
2% ch(a) 2+l P(2)dz
:C ( )(; 2)2 j(a4 n+4 4a3 n+3+80(2 n+2 80(Zn+l+42n)g0(2)d2
2\ +a S

1 4 T n+4 2 T n+2 T n

= dz+8 dz+4 d

C @@ a’) {a :[Oz @(2)dz +8« :[oz @(z)dz + :[oz o(2) z}

using the result of n order moment of normal distribution in the above equation we get the
result in (9). Similarly, when n is odd the same can be obtained with the help of following
equation

n 1 T n+ T n+
E(Z ):m[—4a3[®2 3¢(Z)d2—8a:[02 l@(Z)dZ:|'
C: Proof of Proposition 3
M, (t) == Ietz [a a’7® +8a%z7° —8az+4](p(z) dz (A1)

C (a)(2+

Again, I¢(z)e‘2dz —e2? =M, (t), i.e., mgf of standard normal variable

—00

TZgo(z)e“dz=t M, (), Tzz(p(z)e”dz =t’M, () + M (t)

jzsgo(z)e“dzztSM ) () +3tM, (D) and [2°p(z)e dz =t*M, (t) + 6t°M, (t) +3M (1)

Now, applying the above results in (Al)_we get the expression in (10).
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D: Proof of Proposition 4

1 S B T
F(Z):(2+a2)(2+3a2)_-[0a " +8a°z +4[Ee }dz
_a'[-2(3+2%) p(2) + 3D(2)] + 8’ [-Z (X) + D(2)] + 4D(2)
) Cy(a)2+a’)

On simplifying the above equation we get the result in (12).

1
C,()(2+a

Again, M, (t) = o [er*[a*z* +8a2? + 4]p(2) dz (A2)

tZ

Again, [p(z)e""dz=e? =M, (t), i.e., mgf of standard normal variable

—o0

jzzgo(z)e“dz =t’M, (t)+ M, (t)and Iz“gp(z)e”dz =t*M, (t) + 6t*M , (t) + 3M, (t)
Now, applying the above results in (A2), we get the expression in (13).

E: Log-Likelihood and Fisher Information Matrix

2 2
1(0; y)2|og“1a(uj} +1]|og(2+a2)|oga|og(2+3a2)llog(zﬁ)l(u]
o2 2 2\ o

Score functions:

The first-order partial derivatives of 1(@; y) are:
aA@y) _(y-u)  _ 4ab

ou o? o(1+b?)
o@y) _ n (y-mp)°  4aly—wb
oo o c? c?(1+b?%)
al(0;y) __n(6a +120°)  4(y—m)b
oo 4+8a?+3a* o(l+b?)

The second-order partial derivatives of 1(@;y) are:
o°1(6;y) 1 2a° 4a’h’
+2 2 2y 2 2\2
o (1+b%) o°(1+b)
OlGy) _ n _3(y-p)*  f2a°(y-p)* 4a’(y-u)’b® da(y-mb
T2 T 2T it 2y 4 22 3 2
oo o o o (L+b?) o (Ll+b?) o’ (1+b%)
o°1(6;y) (16a +12a°)? 16+ 36a* 2(y-p)*  A(y-p)’b?
— 2 - N- 2 ne T 2 ol s 2 22
oa (4+8a° +3a")° 4+8a°+3a oc”(l+b%) o°(1+b%)

2 2

ou o
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°16yy) _ 2y-p)  4a’(y—u) 8a®(y— )b 4ab
o110 == 3 T3 2y 3 2\2 2 2
oo o o®(1+b*) o (1+b*) o (1+b*%)
’10;y) _ Aa(y—p) |, Ba(y—u)b® 4b
=— + +
ouda  or(@+b?) or(@+b?)?  o(l+b?)
’NGry) __Aaly-w)* +80!(Y—#)2b2 4(y —p)b
doda o (1+b?)  o*(A+b?)?  o?(1+b?)
where, b=(1—M).
[y 510 y) ey
E|l-——=~| E|l-——F—| E-——+
ou ouoo ouoa
2 . 2 . 2 .
O 137 N B T N (TG
0o Ou oo folegolo’
2 . 2 . 2 .
£ _o1(Gyy) £ _o1(8yy) £ 0 I(H,zy)
i oa ou oado o ]
where, g _ @16y | 216y 1@y 91Ey)
ou’ ou? i ouda ouoda ‘
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