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ABSTRACT  In this paper a new type of alpha skew distribution is proposed under 

Balakrishnan (2002) mechanism and some of its related distributions are investigated. The 

moments and distributional properties and some extensions related to this distribution are also 

studied. Suitability of the proposed distribution is tested by conducting data fitting experiments 

and model adequacy is checked via AIC and BIC in comparison with some related 

distributions.  Likelihood ratio test is carried out to discriminate between normal and proposed 

distribution. 
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1. INTRODUCTION 
 

One cannot undermine the 

applications and the value of normal 

distribution in real life to model the 

symmetric data. Now there are many real 

life situations which seem to be symmetric 

but due to influences of other factors they 

depart from symmetry (for details see 

Chakraborty and Hazarika, 2011, and 

Chakraborty et al., 2015). To tackle these 

situations Azzalini (1985) discovered the 

skew-normal distribution by inducting an 

additional parameter to introduce 

asymmetry in the normal distribution and 

is define as follows: A continuous random 

variable (r.v.) Z  follows skew normal (SN) 

distribution i.e. )(SN~ Z  if it has 

probability density function (pdf) given by

 

                                RzzzzfZ   ,);()(2);(                                           (1) 

 

where,   and    are respectively, the pdf 

and cumulative distribution function (cdf) 

of the standard normal distribution. 

Balakrishnan in 2002 as a discussant in 

Arnold and Beaver (2002) proposed the 

generalization of the skew normal density 

and studied its properties. The pdf of the 

same distribution is

  
                       RzCzznzf n

n

Z   ,;)()]()[(),;(                               (2) 
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where, n is a positive integer and 

))((E)( UC n

n   , )1,0(N~U . In 

particular, if 1 the Balakrishnan skew 

normal density becomes skew normal 

density of Azzalini (1985). Furthermore, 

Sharafi and Behbodian (2008) extensively 

studied its different forms and properties. 

Bahrami et al. (2009) introduced the two 

parameter Balakrishnan skew normal 

distribution. Yadegari et al. (2008) 

discussed the generalization of 

Balakrishnan skew normal distribution. 

 

In 2007, Huang and Chen proposed 

the method for the construction of skew-

symmetric distributions starting from a 

symmetric (about 0) pdf  (.)h   
by 

establishing the concept of skew function 

(.)G  which is a Lebesgue measurable 

function such that, 1)(0  zG  and

,1)()(  zGzG Rz , almost 

everywhere.  An r.v. Z  is said to be skew 

symmetric if its pdf is of the form:

 RzzGzhzf  ;)()(2)(         (3) 

 

Olivero in 2010 developed a new 

form of skew distribution which exhibits 

both unimodal as well as bimodal behavior 

and named it as alpha skew normal 

distribution with the pdf given by: 

 

                     );2()(}1)1{();( 22   zzzf Rz ,                             (4) 

 

Using the same approach of Olivero 

(2010), Harandi and Alamatsaz (2013) and 

Hazarika and Chakraborty (2014) 

explored the alpha skew Laplace 

distribution and alpha skew Logistic 

distribution respectively. Venegas et al. 

(2016) and Louzada et al. (2017) studied 

the logarithmic form and bivariate form of 

alpha-skew-normal distribution, 

respectively. Sharafi et al. (2017) 

discussed the generalization of alpha-

skew-normal distribution. 

 

In this article, the main aim is to 

propose a new version of alpha skew 

normal distribution (known as 

Balakrishnan alpha skew normal 

)(2 BASN distribution, where R ) 

which is flexible enough to adequately 

support both uni-modal and bi-modal 

behaviors as well as positive and negative 

skewness by considering the methodology 

advocated by Balakrishnan in 2002 and 

some of its basic properties are 

investigated. To exhibit the applicability 

of the proposed distribution, the two real 

life datasets are consider which give better 

fitting when compared to some other 

known distributions. 

 

The article is organized as follows. In 

section 2, the Balakrishnan alpha skew 

normal distribution is defined and some of 

its important distributional properties are 

discussed. The half Balakrishnan-alpha-

skew normal distribution is defined in 

section 3. Section 4 discusses about the 

extensions of Balakrishnan alpha skew 

normal distribution along with some of its 

basic properties. The location-scale 

extension, method of moments and 

maximum likelihood estimation are given 

in section 5. In section 6, some numerical 

examples based on real life data are 

provided. Finally, the article ended with 

conclusions in section 7. 

  

 

2. BALAKRISHNAN ALPHA SKEW 

NORMAL DISTRIBUTION 
 

In this section we introduce the 

generalized version of bimodal skew 

normal distribution of Olivero (2010) and 

proposed Balakrishnan alpha skew normal 

distribution.
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Definition 1:  A r.v. Z is said to follow generalized bimodal normal distribution if it has the 

following pdf

 
                                                 

;)()( z
C

z
zf

n

 Rz                           (5) 

 

where,  n is positive even integers and C  is normalizing constant. Symbolically, we can write

)(BN~ nZ . The shapes of pdfs with different choices of n are shown in Figure 1. 

 

Remark 1: The pdf in eqn. (5) has at most two modes and the same has been seen from the 

equation 0)(
)(

)(
21







z
C

nzz
zf

n

 . This equation has only three zero, therefore the pdf in 

eqn. (5) have only two modes.

  

 
Figure 1. Plots of pdf of )(BN n  

 

Definition 2:   An r.v. Z  with the pdf given by 

 

                                        

)(
2

1)1(

)(

1
);(

2

2

2

2

z
z

C
zfZ 






 












 ; Rz ,     (6) 

 

where,
22

2

4
3)(





C , is said to follow Balakrishnan alpha skew normal distribution 

with parameter  . We denote it by )(2 BASN . The plots of the pdfs are depicted in Figure 2 for 

different choices of the parameter . 
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Figure 2. Plots of pdf of )(2 BASN  

 

It’s obvious to note and check in Figure 2 that )(2 BASN  is bimodal when 1 .  

 

Remark 2: The pdf of the proposed )(2 BASN  distribution is constructed using the formula 

(2), by taking 
2

2

2

1)1(
(.)










z  and 2n .  

Properties of )(2 BASN : 

i) )()0(2 zBASN   

ii) If  , then pdf of Z becomes  )(
3

)(
4

z
z

zfZ  i.e., )4(~ BNZ  

iii) If )(~ 2 BASNZ , then )(~ 2  BASNZ  

iv) )(2 BASN  
has at most two modes. 

 

Proof: To show )(2 BASN  
distribution have at most two modes, which is equivalent to prove 

that the following equation have three zeros. 

 

                      

0
)2()(

)()2424(]1)1[(
);(

22

2

22322












C

zzzzzz
zDfZ

              (7) 

 

It is easy to show that the eqn. (7) has 

at most three real zeros because 

01)1( 2  z  will have two complex 

roots, 02424 2232  zzzz   

has three real roots and 0)( z . The same 

can be depicted from the contour plot of 

the eqn. (7) given in Figure 3. It is also 

observed from the Figure 3 that 

approximately for ;95.095.0     

)(2 BASN  remains unimodal.

 

  
Figure 3. The contour plots of the equation 0);( zDfZ

 



Malaysian Journal Of Science 39(2): 71-91 (June 2020) 

75 
 

Proposition 1: If )(~ 2 BASNZ  distribution then its cdf is given by 

 

                             

 
)(

)2()(

)3()2(488
)();(

22

2

2322

z
C

zzzz
zzFZ 











  

(8) 

 

where, )(z  is the cdf of standard normal distribution. 

Proof: see Appendix A.  

 

The plots of cdf with different choices parameter   is shown in Figure 4. 

 

 
Figure 4. Plots of cdf of )(2 BASN  

 

For )10(01   ,  we can say that the standard normal is stochastically smaller (larger) 

than )(2 BASN  as seen in the Figure 4. 
 

Remark 3: In particular, if   then the cdf of )(2 BASN becomes the cdf of )4(BN and 

is given by )(
3

)3(
)()(

2

z
zz

zzFZ 


 .  

Proposition 2: If )(~ 2 BASNZ  distribution then 

 

                   








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




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

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


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

































oddiswhen,
)2)((

)!2/)1((

)!1(4

)!2/)3((

)!3(
2

eveniswhen,
)2)((

)!2/(

!16

)!2/)2((

)!2(16

)!2/)4((

)!4(
2

)(

22
2

2
2

1

22
2

24
2

)4(

n
C

n

n

n

n

n
C

n

n

n

n

n

n

ZE
n

n

n










            (9)

 

 

Proof:  see Appendix B. 
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Remark 4: The expression (9) can be rewritten with the help of Gamma function as 

 

 























 



oddiswhen,
)2)(2/1()(

)1(})2(2{2

eveniswhen,
)2()2/1()(

)()})3(8()1(4{2

)(

22

2

2

22

5

22

2

2
1222

n
C

n

n
C

nn

ZE
n

n

n

n

n









 

 

In particular, 
)2(

4
)(

2






ZE , 

)32(

4

)2(

4
5)(

22

2

 



ZE , 

)32()2(

)34)(52(
)(

222

42








ZVar  

42

2
3

384

)52(12
)(








ZE  and 

)32(

16

)2(

48
35)(

22

4

 



ZE  . 

 

Remark 5: By optimizing )(ZE  and )(ZVar  with respect to  we get the following bounds. 

i. 414.1)(414.1  ZE   

ii. 7966.4)(972.0  ZVar  

 

The same can be easily visualized from Figure 5 and Figure 6. 

 

  
 

Figure 5. Plot of mean 
 

Figure 6. Plot of variance 

 

Remark 6: The expression for skewness )( 1  and kurtosis )( 2  are respectively given by  

 

3642

2426

1
)156208(

)154)(32(64









 and 

2642

1086422

2
)156208(

)3541021614411232)(32(3











 

 

By optimizing 
1 and

2 with respect to  we get the following bounds. 

i. 05359.2 1    

ii. 37684.6 2    

 

The same can be easily visualized from Figure 7 and Figure 8. 
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Figure 7. Plot of skewness                             Figure 8. Plot of kurtosis 

 

Proposition 3: If )(~ 2 BASNZ distribution then its moment generating function (mgf) is 

given by 

 

               
22

2

22233342444

)2()(

]488834436[)(
)(










C

tttttttM
tM X

Z

           

(10) 

 

where, )(tM X
 is the mgf of standard normal variable.  

Proof: see Appendix C. 

 

Proposition 4: The )(2 BASN  distribution can be represented as a mixture of two components 

as given below 

                  )(
)2()(

)84(
)(

)2()(

48
);(

22

2

33

22

2

2244

z
C

zz
z

C

zz
zf 



















             (11) 

 

where the 1st part is a symmetric pdf denoted by )(2 SCBASN  with cdf and mgf  given 

respectively by 

 

                                            

)(
)2)((

]83[
)()(

22

2

2322

z
C

zzz
zzF 








                                   (12) 

 

)(
)2()(

]48836[
)(

22

2

22242444

tM
C

ttt
tM XZ










            

(13)

 
 

where, )(z  is the cdf of standard normal distribution. 

Proof: see Appendix D. 

 

Remark 7: (i) For 0 , )(2 SCBASN

becomes standard normal distribution. (ii)

)(2 SCBASN can be useful in generating 

random numbers from )(2 BASN  stated in 

the next remark. 

 

Remark 8: To generate the random number 

Z  from )(2 BASN  distribution for different 

choices of the parameter   one can adopt 

the acceptance sampling method with the 

following steps: 

 I: Generate random number U  from 
)1,0(Uniform  

II: Generate random number H  from

)(2 SCBASN .
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  III: Set HZ   if  
)(

1

1 Hf

Hf
U


 , otherwise, step back to I and continue the process. 

 

 

Where, 
 

)223(
3

1

)(1











Zf

Zf
Sup and  .f  and  .1f are pdf of )(2 BASN and )(2 SCBASN

respectively.  

 

 

3. HALF )(2BASN  DISTRIBUTION 

 

A half Balakrishnan-alpha-skew normal )(2 HBASN distribution truncated below ‘0’ is 

given by

 

                                      
0);(

48883

]1)1[(
);(

234

22





 tt

bb

t
tfT 




              (14) 

 

where, )(t is the pdf of the standard half-normal distribution and 


2
b . 

 

 

This can be considered as a potential life 

time distribution. The corresponding 

survival function );( tST  and the hazard 

rate functions );( thT  of )(2 HBASN  can 

be expressed as below

 

 

)]388(8[4

)()2)(()34888()(
);(

2

22

2

333222











bb

tCttttt
tST   

 

 

and 

 

 

 
)()()2)(()34888(

]1)1[(
);(

22
2

333222

22

ttCtttt

t
thT









 . 

 

 

 

where, )(t  and )(t are respectively the 

cdf and survival function of the standard 

half-normal distribution. 

 

We have plotted the );( thT
 for the suitable 

values of the parameter  , in Figure 9 to 

study its behavior graphically.
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Figure 9. Plots of hazard rate function of )(2 HBASN  

 

It can be observed from Figure 9 that 

the hazard rate is increasing for 0  

while it assumes bathtub shape for 7.0 . 

For the values of 7.00  , the hazard 

rate takes different shapes. Therefore, the 

hazard rate function of )(2 HBASN  
distribution assumes different useful 

shapes depending on the choice of the 

values of the parameter  , and thus has the 

potential to be a flexible life time model.

 

Remark 9: In particular for 0 , )(2 HBASN  distribution reduces to standard half-normal 

distribution. 

 

 

4. SOME EXTENSIONS OF )(2BASN DISTRIBUTION 

 

In this section we briefly discussed some of the possible extensions of )(2 BASN

distributions. These extensions are being currently investigated and will be reported later. 

 

4.1. The Bivariate )(2BASN  Distribution 

 

Definition 3: A random vector ),( 21 ZZZ  has two dimensional (bivariate) )(2 BASN

distribution if it has the following pdf

 

                        

RR
C

f 


 21

2

2

21

22

2211
21 ,,);(

),,(

]1)1[(
),,;( 




 zz

zz
z                         (15) 

 

where, )3632)(22(),,(
2

221

2

1

2

221

2

121  C , and )(2 z is the pdf of 

a bivariate normal distribution































1

1

0

0

,

2



N . We denote it by ),,(~ 212 BBASNZ  

 

 

Special cases of ),,(  212BBASN :  

 

 If 021  , then )(
1

1
,

0

0
~ 22 zZ 
























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



N . 
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 If 02  , then pdf of 
1Z  is )(

384

]1)1[(
124

1

2

1

22

11 z
z









 and if 01  , then pdf of 

2Z  is 

)(
384

]1)1[(
224

2

2

2

22

22 z
z









.  

 If  21  , then R
zz

f 



 zzz );(

)1(12

)(
),,;( 22

4

21
21 


 . 

 If ),,(~ 212 BBASNZ , then ),,(~ 212   BBASNZ . 

 

4.2 A Two- parameter )(2BASN  Distribution 

 

Definition 4: An r.v. Z  has a two-parameter )(2 BASN  distribution with parameters

R21 , , denoted by ),( 212 TPBASN , if its pdf is  
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                                      (16) 

where, 
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2 ]1)1[()(  zz  ; and 22
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2 ]1)1[()(  zz  . 

 

Special cases of ),( 212 TPBASN : 

 If 021  , then )()1,0(~ zNZ  . 

 If 02  , then )(~ 12 BASNZ and if 01  , then )(~ 22 BASNZ . 

 If   21
, then )()(

10548040812816

)1)1((
);( 48642

42





 BASNz

z
zf 




 . 

 If  21  , then )(
105

)(
8

z
z

zf  . 

 If ),(~ 212 TPBASNZ , then ),(~ 212   TPBASNZ . 

 

4.3 Balakrishnan Alpha-Beta Skew Normal Distribution 

 

Definition 5: If the pdf of an r.v. Z  is given by  

 

                               

Rzz
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
 ,,);(

),(

]1)1[(
),;(

223

                              (17) 

 

then we say that Z  is distributed according to the Balakrishnan alpha-beta skew normal 

distribution with parameters   and .   

 

where, )6938(15)6308()3154(126034),( 2222234  C . We 

denote it by )(~ 2 BABSNZ . 

Special cases of )(2BABSN :  
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 If 0 , then we get )(2 BASN  distribution and is given by 

)(
)2()(

]1)1[(
)(

22

2

22

z
C

z
zf 








 . 

 If 0 , then we get )(
))6938(154(

]1)1[(
)(

22

223

z
z

zf 







 . 

This equation is known as Balakrishnan beta skew normal ( )(2 BBSN ) distribution. 

 If 0  , then we get the standard normal distribution. 

 If  , then we get the bimodal normal ( )4(BN ) distribution given by 

)(
3

)(
4

z
z

zf  . 

 If  , then we get the bimodal normal ( )12(BN ) distribution given by 

)(
10395

)(
12

z
z

zf  . 

 If ),(~ 2 BABSNZ , then ),(~ 2   LBABSNZ . 

 

4.4 Generalization of )(2BASN  Distribution 

 

Definition 6: If the pdf of an r.v. Z  is given by   

 

                            

,0,,);()(
),(

]1)1[(
),;(

22




 



 Rzzz

C

z
zf                              (18) 

 

then we say that Z  is distributed according to the Generalized )(2 BASN  distribution with 

parameters .and                                            

Where, )44)1(2()5.142(),( 32342   bC ; 
21 





 ; 



2
b ; 

)()( zandz   are defined above. We denote it by ),(~ 2 GBASNZ . 

 

Special cases of ),( 2GBASN : 

 If 0 , then )(~ SNZ . 

 If 0 , then )(~ 2 BASNZ . 

 If 0  , then )1,0(~ NZ . 

 If  , then )()(
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  where, 


2
b  and (.)I  is an indicator function. 

 If ),(~ 2 GBASNZ , then ),(~ 2   GBASNZ . 
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4.6 The Log- )(2BASN  Distribution 

  

 In this section, using the work of (Venegas et al., 2016), we present the definition and 

some simple properties of log- )(2 BASN  distribution. 

 

Let YeZ  , then )(ZLogY  , therefore, the density function of Z  is defined as follows: 

 

Definition 7: If the pdf of an r.v. Z is given by 
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              (19) 

 

then we say that Z  is distributed according 

to the log- )(2 BASN  distribution with 

parameter . Where, )(zLogy   and )(y  

is the pdf of the standard log-normal 

distribution. We denote it by

)(~ 2 LBASNZ .

Special cases of )(2LBASN : 

 If 0 , then we get the standard log-normal distribution given by 
z

y
zf

)(
)(


 . 

 If  , then we get the log-bimodal normal )4(LBN distribution given by 

)(
3

)(
4

y
z

y
zfZ  . 

 If )(~ 2 LBASNZ , then )(~ 2  LBASNZ . 

 

 

5. PARAMETER ESTIMATION OF )(2BASN  

 

If )(~ 2 BASNZ  distribution then ZY    is the location (  ) and scale ( ) 

extension of Z  and has the pdf is given by 
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Symbolically, we write as ),,(~ 2 BASNY . 

 

5.1.  Method of Moments 

 

Let nYYY ...,,, 21  
 
be a random sample of siz n drawn from ),,(2 BASN distribution in 

eqn. (20) and 321 and, mmm are the first three sample raw moments respectively. Then, the 

moment estimates of the three parameters  and,  are obtained by 
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Substituting the value of   from eqn. (21) in eqn. (22) and solving for 2 , we get 
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Finally, by putting these values of  and 2 in eqn.(23), we get the following equation in   
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where,  

 

2

1 2 d ; 2

2 32 d ; 2

3 52 d ; 4

4 34 d ; and 
42

5 15244  d . 

 

Furthermore, the value of  is 

estimated numerically as the exact solution 

of the eqn.(25) is not easily tractable. Once 
 is estimated, the rest of the two 

parameters namely,  and can be 

estimated directly from eqn. (21) and eqn. 

(24) respectively.

 

5.2. Maximum Likelihood Method 

 

Likelihood function: 

 

Let nYYY ...,,, 21  
be a random sample of size n drawn from ),,(2 BASN  distribution of 

eqn. (20), then the log-likelihood function for ),,(    is given by
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Differentiating this eqn. (26) above partially with respect to the parameters  and,, , the 

following likelihood equations are obtained: 
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

 )(
1


 iy

ib . 

 

 

The solutions of the above system of 

likelihood equations gives the maximum 

likelihood estimator for ),,(    which 

can be obtained by numerically 

maximizing eqn. (26) with respect to the 

parameters ),,(   . The derivation of 

the observed information matrix is also 

obtained using numerical procedures. 

Initial values for those procedures can be 

obtained although the moment estimators.  

 

 The log-likelihood function based on a 

single observation Y  for the parameters 

),,(   , is given in Appendix E. The 

variance-covariance matrix of the MLEs 

can be obtained by taking the inverse of the 

Fisher information matrix (I) as given in 

Appendix E. 

 

 

6. REAL LIFE APPLICATIONS: 

COMPARATIVE DATA FITTING 
 

Here we have considered two datasets: 

the dataset 1 is related to N latitude degrees 

in 69 samples from world lakes, which 

appear in Column 5 of the Diversity data 

set in website: 

http://users.stat.umn.edu/sandy/courses/80

61/datasets/lakes.lsp; and the dataset 2 is 

the body mass index (BMI) of 202 

Australian athletes (Cook and Weisberg, 

1994). 

 

We then compared the proposed 

distribution ),,(2 BASN  with the 

normal distribution ),( 2N , the logistic 

distribution ),( LG , the Laplace 

distribution ),( La , the skew-normal 

distribution ),,( SN  of Azzalini 

(1985), the skew-logistic distribution 

),,( SLG  of Wahed and Ali (2001), the 

skew-Laplace distribution ),,( SLa  of 

Nekoukhou and Alamatsaz (2012), the 

alpha-skew-normal distribution 

),,( ASN  of Olivero (2010), the alpha-

skew-Laplace distribution ),,( ASLa  of 

Harandi and Alamatsaz (2013), the alpha-

skew-logistic distribution ),,( ASLG  
of Hazarika and Chakraborty (2014), the 

alpha-beta-skew-normal distribution 

),,,( ABSN  and beta-skew-normal 

distribution ),,( BSN  of Shafiei et al. 

(2016). The reason behind the choice of the 

above distribution for comparison lies in 

the fact that the Logistic and Laplace 

distributions and their skewed version are 

main competitors of the proposed 

distribution. 

 

Using R software package GenSA 

package version-1.0.3, (Xiang et al., 2013), 

the MLE of the parameters are obtained by 

using numerical optimization routine. AIC 

and BIC are used for model comparison.  

 

 Table 1 and Table 2 shows the MLE’s, 

log-likelihood, AIC and BIC of the above 

mentioned distributions. The graphical 

representations of the results taking only 

the top three competitors for the proposed 

model are given in Figure 10 and Figure 11.
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Table 1. MLE’s, log-likelihood, AIC and BIC for N latitude degrees  

in 69 samples from world lakes. 

Parameters 

Distributions 
          Llog  AIC BIC 

),( 2N  45.165 9.549 -- -- -- -253.599 511.198 515.666 

),( LG  43.639 -- -- -- 4.493 -246.645 497.290 501.758 

),,( SN  35.344 13.70 3.687 -- -- -243.036 492.072 498.774 

),,( BSN  54.47 5.52 -- -- 0.74 -242.530 491.060 497.760 

),,( SLG  36.787 -- 2.8284 -- 6.417 -239.053 490.808 490.808 

),( La  43.00 -- -- -- 5.895 -239.248 482.496 486.964 

),,( ASLG  49.087 -- -- 0.861 3.449 -237.351 480.702 487.404 

),,( SLa  42.30 -- 0.255 -- 5.943 -236.900 479.799 486.501 

),,( ASLa  42.3 -- -- -0.220 5.440 -236.079 478.159 484.861 

),,( ASN  52.147 7.714 -- 2.042 -- -235.370 476.739 483.441 

),,,( ABSN  47.69 7.15 -- 1.72 -0.37 -230.770 469.530 478.480 

),,(2 BASN  54.265 6.559 -- 1.994 -- -226.228 458.455 465.158 

 

 

 
Figure 10. Plots of observed and expected densities of some distributions for N latitude 

degrees in 69 samples from world lakes. 
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Table 2. MLE’s, log-likelihood, AIC and BIC for body mass  

index (BMI) of 202 Australian athletes. 

Parameters 

Distributions 
          Llog  AIC BIC 

),( 2N  22.956 2.857 -- -- -- -498.668 1001.336 1007.953 

),( La  22.749 -- -- -- 2.123 -494.08 992.16 998.7765 

),,( BSN  22.528 2.694 -- -- -0.058 -492.88 991.76 1001.685 

),,( ASLa  22.350 -- -- -0.14 2.07 -492.601 991.202 1001.127 

),,( SLa  22.350 -- 0.865 -- 2.084 -492.461 990.922 1000.847 

),( LG  22.787 -- -- -- 1.529 -491.462 986.924 993.5405 

),,( SN  19.969 4.133 2.313 -- -- -490.099 986.198 996.1228 

),,( ASLG  21.933 -- -- -0.201 1.475 -489.094 984.188 994.1128 

),,( ASN  24.834 2.653 -- 0.994 -- -488.69 983.38 993.3048 

),,,( ABSN  23.998 2.853 -- 0.817 -0.131 -486.743 981.486 994.7191 

),,( SLG  20.717 -- 1.401 -- 1.975 -487.311 980.622 990.5468 

),,(2 BASN  26.482 2.706 -- 0.971 -- -484.773 975.546 985.4708 

 
 

 
Figure 11. Plots of observed and expected densities of some distributions for body mass 

index (BMI) of 202 Australian athletes. 
 

 

  



Malaysian Journal Of Science 39(2): 71-91 (June 2020) 

87 
 

It is found from Table 1 and 2 that the 

proposed ),,(2 BASN  distribution 

provides best fit to the data set in terms of 

AIC and BIC. The plots of observed and 

expected densities presented in Figure 10 

and 11 also confirm our findings.

 

Remark 10: The observed variance-covariance matrix of the MLEs of the parameters 

),,(    of  ),,(2 BASN  distribution in dataset 1 and dataset 2 are obtained 

respectively, as
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6.1. Likelihood Ratio Test  

 

Furthermore, since ),( 2N  and

),,(2 BASN  distributions are nested 

models, the likelihood ratio (LR) test is 

used to differentiate between them. The LR 

test is carried out to test the following null 

hypothesis 0:0 H , that is the sample is 

drawn from ),( 2N ; against the 

alternative 0:1 H , that is the sample is 

drawn from ),,(2 BASN . 

 

The values of LR test statistic for the 

datasets 1 and 2 are respectively 54.742 and 

27.79. Both of which exceed the 99% 

critical value, that is, 6.635. Thus there is 

evidence in support of the alternative 

hypothesis that is, the sampled data comes 

from ),,(2 BASN , not from ),( 2N . 

 

 

7. CONCLUDING REMARKS AND 

FURTHER SCOPE 
 

In this study a new alpha-skew-normal 

distribution with one parameter which has 

both unimodal as well as bimodal shapes is 

constructed and some of its properties are 

studied. The bathtub shaped failure rate 

function is seen in the half ),,(2 BASN

distribution. Some extensions of the 

proposed distribution with some of their 

special cases are presented. Our findings 

adequately supported the proposed 

),,(2 BASN distribution as the best 

fitted one to the datasets under 

consideration in terms of AIC and BIC. The 

plots of observed and expected densities 

presented also confirm our findings.  

 

There is scope of extending the present 

work by considering the Logistic and the 

Laplace distributions. Moreover, 

logarithmic forms and bivariate 

generalizations can also be considered as 

future work. 
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APPENDIX 

 

A: Proof of Proposition 1 
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B: Proof of Proposition 2 

 

When n is even;
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using the result of nth order moment of normal distribution in the above equation we get the 

result in (9). Similarly, when n is odd the same can be obtained with the help of following 
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C: Proof of Proposition 3 
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Now, applying the above results in (A1) we get the expression in (10). 

 

 



Malaysian Journal Of Science 39(2): 71-91 (June 2020) 

90 
 

D: Proof of Proposition 4 
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On simplifying the above equation we get the result in (12).  
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Again,
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Now, applying the above results in (A2), we get the expression in (13). 

 

 

E: Log-Likelihood and Fisher Information Matrix 
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