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Abstract: For a finite group 𝐺, let 𝑍(𝐺) be the centre of 𝐺. Then the non-commuting graph on 𝐺, denoted by 𝛤𝐺 , has 𝐺\𝑍(𝐺) as its 

vertex set with two distinct vertices 𝑣𝑝 and 𝑣𝑞 joined by an edge whenever 𝑣𝑝𝑣𝑞 ≠ 𝑣𝑞𝑣𝑝. The degree sum matrix of a graph is a square 

matrix whose (𝑝, 𝑞)-th entry is 𝑑𝑣𝑝
+ 𝑑𝑣𝑞

 whenever 𝑝 is different from 𝑞, otherwise, it is zero, where 𝑑𝑣𝑖  is the degree of the vertex 𝑣𝑖. 

This study presents the general formula for the degree sum energy, 𝐸𝐷𝑆( 𝛤𝐺), for the non-commuting graph of dihedral groups of order 

2𝑛, 𝐷2𝑛, for all 𝑛 ≥ 3. 
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1. Introduction 
 

The non-commuting graph on 𝑮, denoted by 𝜞𝑮, has 

𝑮\𝒁(𝑮) as its vertex set with two distinct vertices 𝒗𝒑 and 𝒗𝒒 

joined by an edge whenever 𝒗𝒑𝒗𝒒 ≠ 𝒗𝒒𝒗𝒑 (Abdollahi, 2006). 

In that sense, the non-commuting graph on 𝑮, 𝜞𝑮 can further 

be associated with the adjacency matrix. The 𝒏 × 𝒏 

adjacency matrix 𝑨(𝜞𝑮) = [𝒂𝒊𝒋] of 𝜞𝑮 has entries 𝒂𝒊𝒋 = 𝟏 if 

there is an edge between 𝒗𝒊 to 𝒗𝒋, and 𝒂𝒊𝒋 = 𝟎 otherwise. 

Since 𝜞𝑮 is a simple graph, then 𝑨(𝜞𝑮) is a symmetric matrix 

with zero diagonal entries. For a real number 𝝀, the 

characteristic polynomial 𝑷𝑨(𝜞𝑮)(𝝀) of 𝜞𝑮 is defined by 

𝐝𝐞𝐭 (𝝀𝑰𝒏 − 𝑨(𝜞𝑮)), where 𝑰𝒏 is an 𝒏 × 𝒏 identity matrix. 

The eigenvalues of 𝜞𝑮 are the roots of the equation 

𝑷𝑨(𝜞𝑮)(𝝀) = 𝟎, and they are labelled as 𝝀𝟏, 𝝀𝟐, … , 𝝀𝒏. The 

spectrum of 𝜞𝑮 is given as a list of eigenvalues 𝝀𝟏, 𝝀𝟐, … , 𝝀𝒎, 

with their respective multiplicities 𝒌𝟏, 𝒌𝟐, … , 𝒌𝒎  as 

exponents, denoted by 𝑺𝒑𝒆𝒄(𝜞𝑮) = {𝝀𝟏
(𝒌𝟏)

, 𝝀𝟐
(𝒌𝟐)

, … , 𝝀𝒎
(𝒌𝒎)

}. 

Furthermore, for all finite graphs, Gutman (1978) defined the 

energy of 𝜞𝑮 as the sum of the absolute values of the 

eigenvalues, denoted by 𝑬(𝜞𝑮) = ∑ |𝝀𝒊|
𝒏
𝒊=𝟏 . 

There are several interesting studies regarding the non-

commuting graph involving the spectrum and energy of its 

adjacency matrix. Mahmoud et al. (2017) described the 

adjacency energy of the non-commuting graph for dihedral 

groups of order 𝟐𝒏. In the same year, Dutta and Nath (2017) 

computed the Laplacian energy of the non-commuting graph 

for finite non-abelian groups, including the dihedral groups 

of order 𝟐𝒏. Alternatively, Fasfous and Nath (2020) 

computed the spectrum and energy of the non-commuting 

graph for certain classes of finite groups inclusive of 𝑫𝟐𝒏. 

They found that the adjacency energy of the non-commuting 

graph is not equal to the Laplacian energy for some finite 

groups. This refutes the conjecture by Gutman et al. in 2008, 

stating that the adjacency energy of any graph is smaller than 

or equal to its Laplacian energy, which holds for all graphs. 

However, readers can also see different perspectives of this 

particular graph where the discussion on the detour index, 

eccentric connectivity, total eccentricity polynomials, and 

mean distance of the non-commuting graph for the dihedral 

group by Khasraw et al. (2020).  

Throughout this paper, the discussion will be directed to 

the degree sum energy defined by Ramane et al. (2013). In 

particular, Jog and Kotambari (2016) presented the degree 

sum energy of six types of simple graphs, namely, Wheel 

graphs, Path Tadpole graphs, Dumbbell graphs, coalescence 

regular graphs, complete graphs, and cycles. Apart from that, 

Hosamani and Ramane (2016) also discussed the degree sum 

energy focusing on determining the lower bounds of degree 

sum energy of simple graphs. However, a limited number of 

studies central to the degree sum matrices for non-

commuting graphs have been found. Therefore, we aim to 

formulate the degree sum energy of the non-commuting 

graph for the dihedral groups.  

For 𝒏 ≥ 𝟑, the non-abelian dihedral group 𝑫𝟐𝒏 of order 

𝟐𝒏 is defined as the reflection and rotation motions that 

return a regular 𝒏-gon to its original state, with the 

composition operation denoted by 𝑫𝟐𝒏. The 𝒏 rotations are 
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𝒂𝒊 and the reflections are 𝒂𝒊𝒃, where 𝟏 ≤ 𝒊 ≤ 𝒏. Therefore, 

𝑫𝟐𝒏 can be written as: 

𝑫𝟐𝒏 = 〈𝒂, 𝒃 ∶  𝒂𝒏 = 𝒃𝟐 = 𝒆, 𝒃𝒂𝒃 = 𝒂−𝟏〉. 

The centre of 𝑫𝟐𝒏, 𝒁(𝑫𝟐𝒏) is equal to {𝒆} 𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝 and 

{𝒆, 𝒂
𝒏
𝟐} 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧. The centralizer of the element 𝒂𝒊 in the 

group 𝑫𝟐𝒏 is 𝑪𝑫𝟐𝒏 (𝒂
𝒊) = {𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝒏 }  and for the 

element 𝒂𝒊𝒃 is either 𝑪𝑫𝟐𝒏
(𝒂𝒊𝒃) = {𝒆, 𝒂𝒊𝒃} , 𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝, or 

𝑪𝑫𝟐𝒏
(𝒂𝒊𝒃) = {𝒆, 𝒂

𝒏
𝟐, 𝒂𝒊𝒃, 𝒂

𝒏
𝟐+𝒊𝒃}, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧.  

 

2. Preliminaries   
   

We define 𝒅𝒗𝒑
 as the degree of a vertex 𝒗𝒑, which is the 

number of vertices adjacent to 𝒗𝒑. The definition of the 

degree sum matrix is given as follows: 

 

Definition 2.1. (Ramane et al., 2013) The degree sum matrix 

of order 𝒏 × 𝒏 associated with a graph 𝜞 is given by 𝑫𝑺(𝜞) =

[𝒅𝒔𝒑𝒒]  whose (𝒑, 𝒒)-th entry is given by 

 

𝑑𝑠𝑝𝑞 = {
𝑑𝑣𝑝

+ 𝑑𝑣𝑞
,    if 𝑝 ≠ 𝑞

0,                   if 𝑝 = 𝑞
 

    

In this section, we include some previous results, which 

benefit the computations of our main results. Recall that, for 

any 𝒏 ≥ 𝟑, 𝑫𝟐𝒏 = 〈𝒂, 𝒃 ∶  𝒂𝒏 = 𝒃𝟐 = 𝒆, 𝒃𝒂𝒃 = 𝒂−𝟏〉. We 

define 𝑮𝟏 = {𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝒏}\𝒁(𝑫𝟐𝒏) and 𝑮𝟐 = {𝒂𝒊𝒃: 𝟏 ≤

𝒊 ≤ 𝒏}. The following is the result of the degree of each 

vertex in the non-commuting graph of 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐. 

 

Theorem 2.1: (Khasraw et al., 2020) Let 𝜞𝑮 be the non-

commuting graph on 𝑮, where 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐. Then, 

 

1. 𝑑𝑎𝑖 = 𝑛, and 

2. 𝑑𝑎𝑖𝑏 = {
2𝑛 − 2, if 𝑛 is odd
2𝑛 − 4, if 𝑛 is even

. 

 

A graph which has 𝒏 vertices with the degree of every vertex 

being 𝒏 − 𝟏 is called a complete graph 𝑲𝒏. Moreover, the 

complement of the complete graph 𝑲𝒏 is written as �̅�𝒏. 

Consequently, the isomorphism of the non-commuting 

graph with some common types of graphs can be seen in the 

following result: 

 

Theorem 2.2: (Khasraw et al., 2020) Let 𝜞𝑮 be the non-

commuting graph on 𝑫𝟐𝒏. 

 

1. If  𝑮 = 𝑮𝟏, then 𝜞𝑮 ≅ �̅�𝒎, where 𝒎 = |𝑮𝟏|. 

       2. If  𝑮 = 𝑮𝟐, then 𝜞𝑮 ≅ {
𝑲𝒏 ,               𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝

𝑲𝒏 −
𝒏

𝟐
𝑲𝟐, 𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧

, 

 

where 
𝒏

𝟐
𝑲𝟐  denotes 

𝒏

𝟐
 copies of 𝑲𝟐. 

The following lemma helps us to compute the 

characteristic polynomial of the non-commuting graph of 

𝑫𝟐𝒏. 

 

Lemma 2.1: (Ramane & Shinde, 2017) If 𝒂, 𝒃, 𝒄 and 𝒅 are real 

numbers and 𝑱𝒏 is an 𝒏 × 𝒏 matrix whose entries are equal 

to one, then the determinant of the (𝒏𝟏 + 𝒏𝟐) × (𝒏𝟏 + 𝒏𝟐) 

matrix of the form 

 

|
(𝝀 + 𝒂)𝑰𝒏𝟏

− 𝒂𝑱𝒏𝟏
−𝒄𝑱𝒏𝟏×𝒏𝟐

−𝒅𝑱𝒏𝟐×𝒏𝟏
(𝝀 + 𝒃)𝑰𝒏𝟐

− 𝒃𝑱𝒏𝟐

|, 

 

can be simplified in an expression given by 

(𝝀 + 𝒂)𝒏𝟏−𝟏(𝝀 + 𝒃)𝒏𝟐−𝟏((𝝀 − (𝒏𝟏 − 𝟏)𝒂)(𝝀 − (𝒏𝟐 −

𝟏)𝒃) − 𝒏𝟏𝒏𝟐𝒄𝒅), 

where 𝟏 ≤ 𝒏𝟏, 𝒏𝟐 ≤ 𝒏 and 𝒏𝟏 + 𝒏𝟐 = 𝒏. 

 

The following lemma is the result of the spectrum of the 

complete graph, which is useful for computing the energy of 

the non-commuting graph for 𝑫𝟐𝒏. 

 

Lemma 2.2: (Brouwer & Haemers, 2010) If 𝑲𝒏 is the 

complete graph on 𝒏 vertices, then its adjacency matrix is 

𝑱𝒏 − 𝑰𝒏 and the spectrum of 𝑲𝒏 is {(𝒏 − 𝟏)(𝟏), (−𝟏)(𝒏−𝟏)}. 

 

3. Main Results 
 

This section presents several results on the degree sum 

energy of the non-commuting graph on the dihedral group 

of order 𝟐𝒏, 𝑫𝟐𝒏.  

 

Theorem 3.1. Let 𝜞𝑮 be the non-commuting graph on 𝑮 and 

𝑬𝑫𝑺 be the degree sum energy of 𝜞𝑮. 

1. If 𝑮 = 𝑮𝟏, then 𝑬𝑫𝑺(𝜞𝑮) = 𝟎. 

2. If 𝑮 = 𝑮𝟐, then 

𝑬𝑫𝑺(𝜞𝑮) = {
𝟒(𝒏 − 𝟏)𝟐 ,                𝐢𝐟 𝒏 𝐢𝐬 𝐨𝐝𝐝

𝟒(𝒏 − 𝟐)(𝒏 − 𝟏),    𝐢𝐟 𝒏 𝐢𝐬 𝐞𝐯𝐞𝐧
. 

 

Proof. 

1. When 𝒏 is odd. From Theorem 2.2 (1),  𝜞𝑮 = �̅�𝒎, where 

𝑮 = 𝑮𝟏 and 𝒎 = |𝑮𝟏| = 𝒏 − 𝟏. Then, every vertex of 𝜞𝑮 

has degree zero. Thus, the degree sum matrix of 𝜞𝑮 is an 

(𝒏 − 𝟏) × (𝒏 − 𝟏) zero matrix, 𝑫𝑺(𝜞𝑮) = [𝟎]. The only 

eigenvalue of 𝑫𝑺(𝜞𝑮) is zero with multiplicity 𝒏 − 𝟏. 

Thus, 𝑬𝑫𝑺(𝜞𝑮) = 𝟎. 

 

When 𝒏 is even. From Theorem 2.2 (1),  𝜞𝑮 = �̅�𝒎, where 

𝑮 = 𝑮𝟏 and 𝒎 = |𝑮𝟏| = 𝒏 − 𝟐, removing 𝒆 and 𝒂
𝒏
𝟐 in 

𝒁(𝑫𝟐𝒏). Then, every vertex of 𝜞𝑮 has degree zero. 

Hence, the degree sum matrix of 𝜞𝑮 is an (𝒏 − 𝟐) × (𝒏 −

𝟐) zero matrix, 𝑫𝑺(𝜞𝑮) = [𝟎]. The only eigenvalue of 

𝑫𝑺(𝜞𝑮) is zero with multiplicity 𝒏 − 𝟐. Thus, 𝑬𝑫𝑺(𝜞𝑮) =

𝟎. 
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2. When 𝒏 is odd. From Theorem 2.2 (2),  𝜞𝑮 = 𝑲𝒏, where 

𝑮 = 𝑮𝟐. Then, every vertex has a degree 𝒏 − 𝟏. Thus, the 

degree sum matrix of 𝜞𝑮 is an 𝒏 × 𝒏 matrix, 𝑫𝑺(𝜞𝑮) =

[𝒅𝒔𝒑𝒒] whose (𝒑, 𝒒)-th entry is 𝒅𝒔𝒑𝒒 = (𝒏 − 𝟏) + (𝒏 −

𝟏) = 𝟐(𝒏 − 𝟏) for 𝒑 ≠ 𝒒, and 0 otherwise. Hence,  

In other words, the degree sum matrix of 𝜞𝑮 is the 

product of 𝟐(𝒏 − 𝟏) and the adjacency matrix of 𝑲𝒏. 

Based on Lemma 2.2, 𝑺𝒑𝒆𝒄(𝑲𝒏) is given by {(𝒏 −

𝟏)(𝟏), (−𝟏)(𝒏−𝟏)}. Since the adjacency energy of 𝑲𝒏 is 

|𝒏 − 𝟏| + (𝒏 − 𝟏)|−𝟏| = 𝟐(𝒏 − 𝟏), the degree sum 

energy of 𝜞𝑮 will be 𝟐(𝒏 − 𝟏) ∙ 𝟐(𝒏 − 𝟏) = 𝟒(𝒏 − 𝟏)𝟐.  

 

When 𝒏 is even. From Theorem 2.2 (2), 𝜞𝑮 = 𝑲𝒏 −
𝒏

𝟐
𝑲𝟐, 

where 𝑮 = 𝑮𝟐. Then, every vertex has a degree of 𝒏 − 𝟐. 

We can now construct an 𝒏 × 𝒏 degree sum matrix of 𝜞𝑮, 

𝑫𝑺(𝜞𝑮) = [𝒅𝒔𝒑𝒒] whose (𝒑, 𝒒)-th entry is 𝒅𝒔𝒑𝒒 = 𝒏 −

𝟐 + 𝒏 − 𝟐 = 𝟐(𝒏 − 𝟐) for 𝒑 ≠ 𝒒, and 0 otherwise. 

Hence, 

 

In other words, the degree sum matrix of 𝜞𝑮 is the 

product of 𝟐(𝒏 − 𝟐) and the adjacency matrix of 𝑲𝒏. 

Using the same argument as in the previous case, the 

degree sum energy of 𝜞𝑮 is given by 𝟐(𝒏 − 𝟐) ∙

𝟐(𝒏 − 𝟏) = 𝟒(𝒏 − 𝟐)(𝒏 − 𝟏). 

 

The illustration of Theorem 3.1 is given by the following 

examples for 𝒏 = 𝟒 and 𝒏 = 𝟓. 

Example 1. Let 𝜞𝑮 be the non-commuting graph on 𝑮, where 

𝑮 ⊂ 𝑫𝟖, 𝑫𝟖 = {𝒆, 𝒂,  𝒂𝟐,  𝒂𝟑, 𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃}, 𝒁(𝑫𝟖) =

{𝒆, 𝒂𝟐}, 𝑮𝟏 = {𝒂, 𝒂𝟑}, 𝑮𝟐 = {𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃}, 𝑪𝑫𝟐𝒏 (𝒃) =

{𝒆,  𝒂𝟐, 𝒃,  𝒂𝟐𝒃} = 𝑪𝑫𝟐𝒏 (𝒂
𝟐𝒃), 𝑪𝑫𝟐𝒏 (𝒂𝒃) =

{𝒆,  𝒂𝟐, 𝒂𝒃,  𝒂𝟑𝒃} = 𝑪𝟐𝒏 (𝒂
𝟑𝒃). By using the information on 

the centralizer of each element in 𝑮, then the non-

commuting graph of 𝑮 is given as in Figure 1.  

When 𝑮 = 𝑮𝟏 from Figure 1 (i), it is clear that we only have 

two vertices 𝒂 and 𝒂𝟑 and the degree of each vertex is zero. 

Then, the non-commuting graph of 𝑮𝟏 is the complement of 

the complete graph on two vertices, �̅�𝟐. This implies that we 

have a 𝟐 × 𝟐 degree sum matrix of 𝜞𝑮 with all the entries are 

zero, 𝑫𝑺(𝜞𝑮) = [
𝟎 𝟎
𝟎 𝟎

]. Furthermore, the characteristic 

polynomial of 𝑫𝑺(𝜞𝑮) is 𝑷𝑫𝑺(𝜞𝑮)(𝝀) = 𝐝𝐞𝐭(𝝀𝑰𝟐 −

𝑫𝑺(𝜞𝑮)) =𝝀𝟐. It follows that the eigenvalues of 𝑫𝑺(𝜞𝑮) is 

zero with multiplicity 𝟐.  Therefore, the degree sum energy 

of 𝜞𝑮 is 𝑬𝑫𝑺(𝜞𝑮) = 𝟎. 

However, if 𝑮 = 𝑮𝟐, then each vertex 𝒂𝒊𝒃, where 𝟏 ≤ 𝒊 ≤

𝟒, is of degree two, as shown in Figure 1 (ii). Then, the non-

commuting graph of 𝑮𝟐 on four vertices is 𝑲𝟒 − 𝟐𝑲𝟐. This 

means that we have a 𝟒 × 𝟒 degree sum matrix of 𝜞𝑮 with 

the non-diagonal entries are 𝟐 + 𝟐 = 𝟒, while the diagonal 

entries are zero. Then, we obtain 

𝑫𝑺(𝜞𝑮) = [

𝟎 𝟒 𝟒 𝟒
𝟒 𝟎 𝟒 𝟒
𝟒 𝟒 𝟎 𝟒
𝟒 𝟒 𝟒 𝟎

] 

. 

Furthermore, the characteristic polynomial of 𝑫𝑺(𝜞𝑮) is 

𝑷𝑫𝑺(𝜞𝑮)(𝝀) = 𝐝𝐞𝐭(𝝀𝑰𝟒 − 𝑫𝑺(𝜞𝑮)) = (𝝀 + 𝟒)𝟑(𝝀 − 𝟏𝟐). 

This implies that the eigenvalues of 𝑫𝑺(𝜞𝑮) are a single 𝝀 =

𝟏𝟐 and 𝝀 = −𝟒 with multiplicity 3. Therefore, 𝑬𝑫𝑺(𝜞𝑮) =

|𝟏𝟐| + 𝟑|−𝟒| = 𝟐𝟒 = 𝟒(𝟒 − 𝟐)(𝟒 − 𝟏). 

 

𝑫𝑺(𝜞𝑮) = [

𝟎 𝟐(𝒏 − 𝟏) ⋯ 𝟐(𝒏 − 𝟏)

𝟐(𝒏 − 𝟏) 𝟎 ⋯ 𝟐(𝒏 − 𝟏)
⋮ ⋮ ⋱ ⋮

𝟐(𝒏 − 𝟏) 𝟐(𝒏 − 𝟏) ⋯ 𝟎

] 

= 𝟐(𝒏 − 𝟏) [

𝟎 𝟏 ⋯ 𝟏
𝟏 𝟎 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟎

] 

. 

 

𝑫𝑺(𝜞𝑮) = [

𝟎 𝟐(𝒏 − 𝟐) ⋯ 𝟐(𝒏 − 𝟐)

𝟐(𝒏 − 𝟐) 𝟎 ⋯ 𝟐(𝒏 − 𝟐)
⋮ ⋮ ⋱ ⋮

𝟐(𝒏 − 𝟐) 𝟐(𝒏 − 𝟐) ⋯ 𝟎

] 

= 𝟐(𝒏 − 𝟐) [

𝟎 𝟏 ⋯ 𝟏
𝟏 𝟎 ⋯ 𝟏
⋮ ⋮ ⋱ ⋮
𝟏 𝟏 ⋯ 𝟎

]. 

 
Figure 1. Non-commuting graph of 𝑮, where (i) 𝑮 = 𝑮𝟏 and (ii) 𝑮 = 𝑮𝟐. 
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Example 2. Let 𝜞𝑮 be the commuting graph on 𝑮, where 𝑮 ⊂

𝑫𝟏𝟎, 𝑫𝟏𝟎 = {𝒆, 𝒂,  𝒂𝟐,  𝒂𝟑,  𝒂𝟒 𝒃, 𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃,  𝒂𝟒𝒃}, 

𝒁(𝑫𝟏𝟎) = {𝒆}, 𝑮𝟏 = {𝒂, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒}, 𝑮𝟐 = { 𝒃,

𝒂𝒃,  𝒂𝟐𝒃,  𝒂𝟑𝒃,  𝒂𝟒𝒃}, 𝑪𝑫𝟐𝒏 (𝒂
𝒊𝒃) = {𝒆, 𝒂𝒊𝒃}, and 

𝑪𝑫𝟐𝒏 (𝒂
𝒊) = {𝒂𝒊: 𝟏 ≤ 𝒊 ≤ 𝒏}. Using the information on the 

centralizer of each element in 𝑮, the non-commuting graph 

of 𝑮 is given in Figure 2. When 𝑮 = 𝑮𝟏, from Figure 2 (i), it is 

clear that we have four vertices 𝒂𝒊, for  𝟏 ≤ 𝒊 ≤ 𝟒, and the 

degree of each vertex is zero. Then the non-commuting 

graph of 𝑮𝟏 is the complement of the complete graph on four 

vertices, �̅�𝟒. This implies that we have a 𝟒 × 𝟒 degree sum 

matrix of 𝜞𝑮 with all the entries are zero, 𝑫𝑺(𝜞𝑮) = [𝟎]. 

Furthermore, the characteristic polynomial of 𝑫𝑺(𝜞𝑮) is 

𝑷𝑫𝑬𝑺(𝜞𝑮)(𝝀) = 𝐝𝐞𝐭(𝝀𝑰𝟒 − 𝑫𝑺(𝜞𝑮)) =𝝀𝟒. It follows that the 

eigenvalues of 𝑫𝑺(𝜞𝑮) is zero with multiplicity 𝟒. Therefore, 

the degree sum energy of 𝜞𝑮 is 𝑬𝑫𝑺(𝜞𝑮) = 𝟎. 

In another case, if 𝑮 = 𝑮𝟐, with each vertex 𝒂𝒊𝒃, where 

𝟏 ≤ 𝒊 ≤ 𝟓, is of degree four as shown in Figure 2 (ii), then the 

non-commuting graph of 𝑮𝟐 on five vertices is the complete 

graph, 𝑲𝟓. This implies that we have a 𝟓 × 𝟓 degree sum 

matrix of 𝜞𝑮 with the non-diagonal entries are 𝟒 + 𝟒 = 𝟖, 

while the diagonal entries are zero. Then, we obtain 

𝑫𝑺(𝜞𝑮) =

[
 
 
 
 
𝟎 𝟖 𝟖 𝟖 𝟖
𝟖 𝟎 𝟖 𝟖 𝟖
𝟖 𝟖 𝟎 𝟖 𝟖
𝟖 𝟖 𝟖 𝟎 𝟖
𝟖 𝟖 𝟖 𝟖 𝟎]

 
 
 
 

. 

 

Furthermore, the characteristic polynomial of 𝜞𝑮 is 

𝑷𝑫𝑺(𝜞𝑮)(𝝀) = 𝐝𝐞𝐭(𝝀𝑰𝟓 − 𝑫𝑺(𝜞𝑮)) = (𝝀 + 𝟖)𝟒(𝝀 − 𝟑𝟐). 

This implies that the eigenvalues of 𝑫𝑺(𝜞𝑮) are a single 𝝀 =

𝟑𝟐  and 𝝀 = −𝟖 with multiplicity 4. Therefore, 𝑬𝑫𝑺(𝜞𝑮) =

|𝟑𝟐| + 𝟒|−𝟖| = 𝟔𝟒 = 𝟒(𝟓 − 𝟏)𝟐. 

 

Theorem 3.2. Let 𝜞𝑮 be the non-commuting graph on 𝑮, 

where 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐 ⊂ 𝑫𝟐𝒏, then the characteristic 

polynomial of degree sum matrices for 𝜞𝑮 is given by 

1.  𝑷𝑫𝑺(𝜞𝑮)(𝝀) = (𝝀 + 𝟐𝒏)𝒏−𝟐(𝝀 + 𝟐(𝟐𝒏 − 𝟐))𝒏−𝟏(𝝀𝟐 −

𝟐(𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐)𝝀 − 𝒏(𝒏 − 𝟏)(𝒏𝟐 + 𝟏𝟐𝒏 − 𝟏𝟐), for 𝒏 is 

odd, and 

2.  𝑷𝑫𝑺(𝜞𝑮)(𝝀) = (𝝀 + 𝟐𝒏)𝒏−𝟑(𝝀 + 𝟐(𝟐𝒏 − 𝟒))𝒏−𝟏(𝝀𝟐 −

𝟐(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒)𝝀 − 𝒏(𝒏𝟑 + 𝟔𝒏𝟐 − 𝟐𝟒𝒏 + 𝟏𝟔), for 𝒏 is 

even. 

 

Proof. 

1. By Theorem 2.1 for the odd 𝒏 case, we have 𝒅𝒂𝒊 = 𝒏 and 

𝒅𝒂𝒊𝒃 = 𝟐𝒏 − 𝟐, for all 𝟏 ≤ 𝒊 ≤ 𝒏. Then, using the fact 

that 𝒁(𝑫𝟐𝒏) = {𝒆}, we have 𝟐𝒏 − 𝟏 vertices for 𝜞𝑮, 

where 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐. The set of vertices consists of 𝒏 − 𝟏 

vertices of 𝒂𝒊, for 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏, and 𝒏 vertices of 𝒂𝒊𝒃, 

for 𝟏 ≤ 𝒊 ≤ 𝒏. Then, the degree sum matrix for 𝜞𝑮 is a 

(𝟐𝒏 − 𝟏) × (𝟐𝒏 − 𝟏) matrix, 𝑫𝑺(𝜞𝑮) = [𝒅𝒔𝒑𝒒]  whose 

(𝒑, 𝒒)-th entries are:  

(i)    𝒅𝒔𝒑𝒒 = 𝒏 + 𝒏 = 𝟐𝒏, for 𝒑 ≠ 𝒒, and 𝟏 ≤ 𝒑, 𝒒 ≤ 𝒏 −

𝟏, 

(ii)   𝒅𝒔𝒑𝒒 = 𝒏 + (𝟐𝒏 − 𝟐) = 𝟑𝒏 − 𝟐, for 𝟏 ≤ 𝒑 ≤ 𝒏 − 𝟏 

and 𝒏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟏, 

(iii)  𝒅𝒔𝒑𝒒 = (𝟐𝒏 − 𝟐) + 𝒏 = 𝟑𝒏 − 𝟐, for 𝒏 ≤ 𝒑 ≤ 𝟐𝒏 −

𝟏 and 𝟏 ≤ 𝒒 ≤ 𝒏 − 𝟏, 

(iv) 𝒅𝒔𝒑𝒒 = (𝟐𝒏 − 𝟐) + (𝟐𝒏 − 𝟐) = 𝟐(𝟐𝒏 − 𝟐), for 𝒑 ≠

𝒒, 𝒏 ≤ 𝒑, 𝒒 ≤ 𝟐𝒏 − 𝟏, 

(v)   𝒅𝒔𝒑𝒒 = 𝟎, for 𝒑 = 𝒒. 

 

We can construct 𝑫𝑺(𝜞𝑮) given as follows: 
𝑫𝑺(𝜞𝑮)

=

[
 
 
 
 
 
 
 

𝟎 𝟐𝒏 ⋯ 𝟐𝒏 𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐
𝟐𝒏 𝟎 ⋯ 𝟐𝒏 𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟐𝒏 𝟐𝒏 ⋯ 𝟎 𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐
𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐 𝟎 𝟐(𝟐𝒏 − 𝟐) ⋯ 𝟐(𝟐𝒏 − 𝟐)

𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐 𝟐(𝟐𝒏 − 𝟐) 𝟎 ⋯ 𝟐(𝟐𝒏 − 𝟐)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟑𝒏 − 𝟐 𝟑𝒏 − 𝟐 ⋯ 𝟑𝒏 − 𝟐 𝟐(𝟐𝒏 − 𝟐) 𝟐(𝟐𝒏 − 𝟐) ⋯ 𝟎 ]
 
 
 
 
 
 
 

 

= [
𝟐𝒏(𝑱𝒏−𝟏 − 𝑰𝒏−𝟏) (𝟑𝒏 − 𝟐)𝑱(𝒏−𝟏)×𝒏

(𝟑𝒏 − 𝟐)𝑱𝒏×(𝒏−𝟏) 𝟐(𝟐𝒏 − 𝟐)(𝑱𝒏 − 𝑰𝒏)
] 

= [
𝑩𝟏 𝑩𝟐

𝑩𝟑 𝑩𝟒
]. 

 

In this case, 𝑫𝑺(𝜞𝑮) is divided into four blocks, where the 

first block is 𝑩𝟏, which is a block of (𝒏 − 𝟏) × (𝒏 − 𝟏) 

matrix with zero diagonal, and every non-diagonal entry 

is 𝟐𝒏. In the next two blocks, we have 𝑩𝟐 and 𝑩𝟑 

matrices, which are of the size (𝒏 − 𝟏) × 𝒏 and 𝒏 × (𝒏 −

𝟏), respectively, whose entries are 𝟑𝒏 − 𝟐. The last block 

 
Figure 2. Non-commuting graph of 𝑮, where (i) 𝑮 = 𝑮𝟏, and (ii) 𝑮 = 𝑮𝟐. 
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is 𝑩𝟒, which is an 𝒏 × 𝒏 matrix with zero diagonal, and 

every non-diagonal entry is 𝟐(𝟐𝒏 − 𝟐). Then, we obtain 

the characteristic polynomial of 𝑫𝑺(𝜞𝑮) from the 

following determinant 

 

𝑷𝑫𝑺(𝜞𝑮)(𝝀) = |𝝀𝑰𝟐𝒏−𝟏 − 𝑫𝑺(𝜞𝑮)| 

= |
(𝜆 + 2𝑛)𝐼𝑛−1 − 2𝑛𝐽𝑛−1 −(3𝑛 − 2)𝐽(𝑛−1)×𝑛

−(3𝑛 − 2) 𝐽𝑛×(𝑛−1) (𝜆 + 2(2𝑛 − 2))𝐼𝑛 − 2(2𝑛 − 2)𝐽𝑛
|. 

Using Lemma 2.1, with 𝒂 = 𝟐𝒏, 𝒃 = 𝟐(𝟐𝒏 − 𝟐), 𝒄 =

𝟑𝒏 − 𝟐, 𝒅 = 𝟑𝒏 − 𝟐, 𝒏𝟏 = 𝒏 − 𝟏 and 𝒏𝟐 = 𝒏, we obtain 

the required result. 

 

2. Again, by Theorem 2.1 for the even 𝒏 case, we know that 

𝒅𝒂𝒊 = 𝒏 and 𝒅𝒂𝒊𝒃 = 𝟐𝒏 − 𝟒, for all 𝟏 ≤ 𝒊 ≤ 𝒏. Then, 

using the fact that 𝒁(𝑫𝟐𝒏) = {𝒆, 𝒂
𝒏
𝟐}, we have 𝟐𝒏 − 𝟐 

vertices for 𝜞𝑮, where 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐. The set of vertices 

consists of 𝒏 − 𝟐 vertices of 𝒂𝒊, for 𝟏 ≤ 𝒊 ≤ 𝒏 − 𝟏, 𝒊 ≠
𝒏

𝟐
, 

and 𝒏 vertices of 𝒂𝒊𝒃, for 𝟏 ≤ 𝒊 ≤ 𝒏. Then, the degree 

sum matrix for 𝜞𝑮 is a (𝟐𝒏 − 𝟐) × (𝟐𝒏 − 𝟐) matrix, 

𝑫𝑺(𝜞𝑮) = [𝒅𝒔𝒑𝒒] whose (𝒑, 𝒒)-th entry is 

(i)   𝒅𝒔𝒑𝒒 = 𝒏 + 𝒏 = 𝟐𝒏, for 𝒑 ≠ 𝒒, and 𝟏 ≤ 𝒑, 𝒒 ≤ 𝒏 −

𝟐, 

(ii)   𝒅𝒔𝒑𝒒 = 𝒏 + (𝟐𝒏 − 𝟒) = 𝟑𝒏 − 𝟒, for 𝟏 ≤ 𝒑 ≤ 𝒏 − 𝟐 

and 𝒏 − 𝟏 ≤ 𝒒 ≤ 𝟐𝒏 − 𝟐, 

(iii)  𝒅𝒔𝒑𝒒 = (𝟐𝒏 − 𝟒) + 𝒏 = 𝟑𝒏 − 𝟒, for 𝒏 − 𝟏 ≤ 𝒑 ≤

𝟐𝒏 − 𝟐 and 𝟏 ≤ 𝒒 ≤ 𝒏 − 𝟐, 

(iv) 𝒅𝒔𝒑𝒒 = (𝟐𝒏 − 𝟒) + (𝟐𝒏 − 𝟒) = 𝟐(𝟐𝒏 − 𝟒), for 𝒑 ≠

𝒒, 𝒏 − 𝟏 ≤ 𝒑, 𝒒 ≤ 𝟐𝒏 − 𝟐, 

(v)  𝒅𝒆𝒔𝒑𝒒 = 𝟎, for 𝒑 = 𝒒. 

 

We can construct 𝑫𝑺(𝜞𝑮) as follows: 
𝑫𝑺(𝜞𝑮)

=

[
 
 
 
 
 
 
 

𝟎 𝟐𝒏 ⋯ 𝟐𝒏 𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒
𝟐𝒏 𝟎 ⋯ 𝟐𝒏 𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟐𝒏 𝟐𝒏 ⋯ 𝟎 𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒
𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒 𝟎 𝟐(𝟐𝒏 − 𝟒) ⋯ 𝟐(𝟐𝒏 − 𝟒)

𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒 𝟐(𝟐𝒏 − 𝟒) 𝟎 ⋯ 𝟐(𝟐𝒏 − 𝟒)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝟑𝒏 − 𝟒 𝟑𝒏 − 𝟒 ⋯ 𝟑𝒏 − 𝟒 𝟐(𝟐𝒏 − 𝟒) 𝟐(𝟐𝒏 − 𝟒) ⋯ 𝟎 ]
 
 
 
 
 
 
 

 

 = [
𝟐𝒏(𝑱𝒏−𝟐 − 𝑰𝒏−𝟐) (𝟑𝒏 − 𝟒)𝑱(𝒏−𝟐)×𝒏

(𝟑𝒏 − 𝟒)𝑱𝒏×(𝒏−𝟐) 𝟐(𝟐𝒏 − 𝟒)(𝑱𝒏 − 𝑰𝒏)
] 

 = [
𝑴𝟏 𝑴𝟐

𝑴𝟑 𝑴𝟒
].  

 

In this case, 𝑫𝑺(𝜞𝑮) is divided into four blocks, where the 

first block is 𝑴𝟏, which is a block of (𝒏 − 𝟐) × (𝒏 − 𝟐) 

matrix with zero diagonal, where every non-diagonal 

entry is 𝟐𝒏. The next two blocks are 𝑴𝟐 and 𝑴𝟑, which 

are of the size (𝒏 − 𝟐) × 𝒏 and 𝒏 × (𝒏 − 𝟐), 

respectively, whose all entries are equal to 𝟑𝒏 − 𝟒. The 

last block is 𝑴𝟒, which is an 𝒏 × 𝒏 matrix with zero 

diagonal, while every non-diagonal entry is 𝟐(𝟐𝒏 − 𝟒). 

Then, we obtain the characteristic polynomial of 𝑫𝑺(𝜞𝑮) 

from the following determinant 

𝑷𝑫𝑺(𝜞𝑮)(𝝀) = |𝝀𝑰𝟐𝒏−𝟐 − 𝑫𝑺(𝜞𝑮)| 

= |
(𝝀 + 𝟐𝒏)𝑰𝒏−𝟐 − 𝟐𝒏𝑱𝒏−𝟐 −(𝟑𝒏 − 𝟒)𝑱(𝒏−𝟐)×𝒏

−(𝟑𝒏 − 𝟒) 𝑱𝒏×(𝒏−𝟐) (𝝀 + 𝟐(𝟐𝒏 − 𝟒))𝑰𝒏 − 𝟐(𝟐𝒏 − 𝟒)𝑱𝒏
|. 

 

Using Lemma 2.1, with 𝒂 = 𝟐𝒏, 𝒃 = 𝟐(𝟐𝒏 − 𝟒), 𝒄 =

𝟑𝒏 − 𝟒, 𝒅 = 𝟑𝒏 − 𝟒, 𝒏𝟏 = 𝒏 − 𝟐 and 𝒏𝟐 = 𝒏, we obtain 

the required result. 

 

Consequently, the degree sum energy of the non-commuting 

graph for the dihedral group of order  𝟐𝒏 can be expressed 

in the following theorem. 

 

Theorem 3.3: Let 𝜞𝑮 be the non-commuting graph on 𝑮, 

where 𝑮 = 𝑮𝟏 ∪ 𝑮𝟐, then the degree sum energy for 𝜞𝑮 is 

given by 

 

1. for 𝒏 is odd, 

𝑬𝑫𝑺(𝜞𝑮) = 𝟐(𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐) +

𝟐√𝟏𝟎𝒏𝟒−𝟐𝟓𝒏𝟑 + 𝟐𝟒𝒏𝟐 − 𝟏𝟐𝒏 + 𝟒, 

 

2. and for 𝒏 is even, 

𝑬𝑫𝑺(𝜞𝑮) = 𝟐(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒) +

𝟐√𝟏𝟎𝒏𝟒−𝟒𝟖𝒏𝟑 + 𝟖𝟏𝒏𝟐 − 𝟓𝟔𝒏 + 𝟏𝟔. 

 

Proof. 

1. By Theorem 3.2 (1), for the odd 𝒏, the characteristic 

polynomial of 𝑫𝑺(𝜞𝑮) has four eigenvalues, with the first 

eigenvalue is 𝝀𝟏 = −𝟐𝒏 of multiplicity 𝒏 − 𝟐, and the 

second eigenvalue is 𝝀𝟐 = −𝟐(𝟐𝒏 − 𝟐) of multiplicity 

𝒏 − 𝟏. The quadratic formula gives the other two 

eigenvalues, which are 𝝀𝟑, 𝝀𝟒 = (𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐) ±

√𝟏𝟎𝒏𝟒−𝟐𝟓𝒏𝟑 + 𝟐𝟒𝒏𝟐 − 𝟏𝟐𝒏 + 𝟒, where one is a 

positive real number, and the other is negative. Hence, 

the degree sum energy for 𝜞𝑮 is 

𝑬𝑫𝑺(𝜞𝑮) = (𝒏 − 𝟐)|−𝟐𝒏| + (𝒏 − 𝟏)|−𝟐(𝟐𝒏 − 𝟐)| 

+ |(𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐) ± √𝟏𝟎𝒏𝟒−𝟐𝟓𝒏𝟑 + 𝟐𝟒𝒏𝟐 − 𝟏𝟐𝒏 + 𝟒  | 

= 𝟐(𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐) + 𝟐√𝟏𝟎𝒏𝟒−𝟐𝟓𝒏𝟑 + 𝟐𝟒𝒏𝟐 − 𝟏𝟐𝒏 + 𝟒. 

 

2. For 𝒏 is even and following Theorem 3.2 (2), the 

characteristic polynomial of 𝑫𝑺(𝜞𝑮) has four 

eigenvalues, where the first eigenvalue is 𝝀𝟏 = −𝟐𝒏 of 

multiplicity 𝒏 − 𝟑, and the second eigenvalue is 𝝀𝟐 =

−𝟐(𝟐𝒏 − 𝟒) of multiplicity 𝒏 − 𝟏. The quadratic formula 

gives the other two eigenvalues, which are 𝝀𝟑, 𝝀𝟒 =

(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒) ± √𝟏𝟎𝒏𝟒−𝟒𝟖𝒏𝟑 + 𝟖𝟏𝒏𝟐 − 𝟓𝟔𝒏 + 𝟏𝟔. 

One is a positive real number for this current case, and 

the other is negative. Therefore, the degree sum energy 

for 𝜞𝑮 is 

𝑬𝑫𝑺(𝜞𝑮) = (𝒏 − 𝟑)|−𝟐𝒏| + (𝒏 − 𝟏)|−𝟐(𝟐𝒏 − 𝟒)| 

+ |(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒)

± √𝟏𝟎𝒏𝟒−𝟒𝟖𝒏𝟑 + 𝟖𝟏𝒏𝟐 − 𝟓𝟔𝒏 + 𝟏𝟔  | 

= 𝟐(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒) +

𝟐√𝟏𝟎𝒏𝟒−𝟒𝟖𝒏𝟑 + 𝟖𝟏𝒏𝟐 − 𝟓𝟔𝒏 + 𝟏𝟔. 
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4. Conclusion 
 

This paper has given the general formula of degree sum 

energy of non-commuting graph for dihedral groups of order 

𝟐𝒏, 𝒏 ≥ 𝟑. For 𝒏 is odd, 𝑬𝑫𝑺(𝜞𝑮) = 𝟐(𝟑𝒏𝟐 − 𝟔𝒏 + 𝟐) +

𝟐√𝟏𝟎𝒏𝟒−𝟐𝟓𝒏𝟑 + 𝟐𝟒𝒏𝟐 − 𝟏𝟐𝒏 + 𝟒, while for 𝒏 is even, 

𝑬𝑫𝑺(𝜞𝑮) = 𝟐(𝟑𝒏𝟐 − 𝟗𝒏 + 𝟒) +

𝟐√𝟏𝟎𝒏𝟒−𝟒𝟖𝒏𝟑 + 𝟖𝟏𝒏𝟐 − 𝟓𝟔𝒏 + 𝟏𝟔. 
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