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DIFFERENTIAL EQUATION 
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Abstract: In nature, many species form teams and move in herds from one place to another. This helps them in reducing the risk of 

predation. Time delay caused by the age structure, maturation period, and feeding time is a major factor in real-time prey–predator 

dynamics that result in periodic solutions and the bifurcation phenomenon. This study analysed the behaviour of teamed-up prey 

populations against predation by using a mathematical model. The following variables were considered: the prey population Pr1, the prey 

population Pr2, and the predator population Pr3. The interior equilibrium point was calculated. A local satiability analysis was performed 

to ensure a feasible interior equilibrium. The effect of the delay parameter on the dynamics was examined. A Hopf bifurcation was noted 

when the delay parameter crossed the critical value. Direction analysis was performed using the centre manifold theorem. The graphs of 

analytical results were plotted using MATLAB.  
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1. Introduction 
 

Numerous applied mathematicians and ecologists have 

increasingly focused on the predator–prey relationship 

because of its generality and significance. Several 

complicated models for two or more interacting species 

systems have been developed considering the effects of 

crowding, age structure, time delay, functional response, 

switching, and other factors (Kesh et al., 2000; Vayenas et al., 

2005; Song et al., 2006; Kundu et al., 2018; Kumar et al., 

2022). 

 

In the natural world, all species live in the wild. Some live 

alone, whereas others live in flocks, hives, packs, or herds. 

For some animals, living with or near other creatures 

facilitates their survival and ensures that the demands of 

each individual member are fulfilled through teamwork.  

Furthermore, building a team and interacting with others is 

a fundamental tool through which a team member can 

consistently achieve positive outcomes and readily meet 

their needs. This study focused on a system in which herds of 

prey coexist and are attacked by the same type of predator. 

The problem of multiteam games is relatively new. For 

certain animals, forming a team more considerably improves 

their efficiency of food search as a group compared with 

when this activity is performed alone and reduces the danger 

of predation.  

 

The interaction of two prey with one predator is often 

unstable. The probability of the coexistence of all the three 

species in a given environment is substantially less. 

Practically, the predator always wins (Poole, 1974). 

Determining the types of interactions in a multiteam 

environment can enable researchers to understand the 

importance of prey teamwork. The finding of such a study 

would be similar to those reported by Poole on Leslie–Gower 

computations (Vance, 1978). Examination of the relationship 

between the prey population and attack rate cannot be 

beneficial for determining the type of behavioural 

characteristics exhibited by animals to identify predators 

(Abrams et al. 1993). By performing an initial assessment of 

the model’s normalised form, a study demonstrated the 

presence of dynamics in practical predator–prey systems 

that can be closely represented by fundamental situations 

(Klebanoff et al., 1994).  

 

A study identified the necessary criteria for all species to 

survive indefinitely and determined the condition when 

species becomes extinct in the system (Kesh et al. 2000). By 

utilising a stochastic logistic differential equation that 

calculates ecosystem function, a study examined the long-

term unexpected behaviour of the at-risk group (Grasman et 

al., 2001). Another study reported that strong diffusions or 

interspecific competitions or slower prey intrinsic growth 

rates and faster predator intrinsic reduction rates are 

required to obtain a nonconstant solution (Pedersen et al. 

2001). To maintain a stable food web, the predator spends 

its time between preys with different relative densities 

(Green, 2004). A predator’s behaviour towards a certain prey 

species is affected by the amount of readily digested food. 
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These genes and therefore the predator population’s 

lifestyle are regulated by a biosynthetic repression approach 

(Vayenas et al., 2005). Protection evolution in prey species is 

improved by survival and decreased density fluctuations 

based on parameters. The inclusion of a predator’s optimal 

meal choice into the model enhanced cohabitation and 

reduced overall density variations (Yamauchi et al., 2005). If 

the impulsive duration surpasses a threshold value, the 

structure remains typically stable (Song et al., 2006).  

 

Many types of animals prefer to be together in a herd. 

Because different groups share the same habitat, they may 

cooperate, compete, or form a predator–prey relationship. 

New paradigm for predator–prey teams were reported in a 

previous study (Elettreby, 2009). By applying nonlinear 

feedback control inputs, three prey–predator populations 

could be stabilised over time asymptotically. The functional 

parameter limit is set under which variables converge to limit 

cycles (El-Gohary et al. 2007).  

 

The system exhibits a stationary distribution that is 

ergodic under certain conditions. The system’s solution 

remains globally asymptotically stable under certain 

conditions (Liu et al., 2013). Two preys and one predator 

comprise a dynamic system modelling multiple teams. 

During an attack, the individuals of both prey groups would 

support one another and the pace of predation for both 

groups would differ (Tripathi et al., 2014). A study proposed 

and tested a mathematical model of hunting for two 

competing prey species. The pace of growth and functional 

responses might be nonlinear functions that are general in 

nature. The findings suggest the presence of a crucial 

characteristic governing the system’s dynamics that is 

termed as an intraspecific interference factor (Deka et al., 

2016). The criteria for local asymptotic stability were 

achieved in the lack of climate fluctuation. The authors 

defined the probabilistic approach by including Gaussian 

white noise notions into all regular equations (Kundu et al., 

2018). The authors evaluated the predator–prey relationship 

in three species in three dimensions by using an ordinary 

differential equation. For the calculation, the subjective 

population sizes of two prey species and one predator 

creature that share their habitats were considered (Aybar et 

al. 2018). Prey cooperation benefits both prey populations in 

many ecosystems. If one prey is harmful and the other is 

weak for a predator, the predator may continue to follow the 

weak prey (Mishra et al., 2019). In the presence of only one 

predator in the system, a fourth-order nonlinear differential 

equation can be used to represent the system (Zhang et al., 

2020). A study used a three-species prey–predator system 

considering that a predator is layman by nature because it 

survives on two prey animals (Manna et al., 2020). In this 

study, we considered two prey populations and two predator 

populations. When two prey species live in two types of 

habitats and can defend themselves in groups, only one of 

the two predators can move between the two types of 

habitats (Frahan, 2020). Trends of a group and the 

effectiveness of herbicide are both affected by a predator 

(Emery et al., 2020).                                                

 

A one-predator model with temporal delays and a weak 

Allee effect in the prey’s growth function is utilised when two 

prey populations are engaged in direct competition. Despite 

its simplicity, the system exhibits a wide range of dynamic 

behaviour, such as the equilibrium point’s biostability (Rihan 

et al., 2020). A high degree of fear of a prey animal and a 

higher quality of living for second prey may improve the 

chances of living of that species (Sahoo et al. 2021). One prey 

is hazardous, whereas the other is harmless to the predator. 

The predation processes of both prey teams are 

independently followed by Monod–Haldane and Holling type 

II functional responses (Alsakaji et al., 2021). Using stochastic 

Lyapunov functionals, a study proposed some necessary 

conditions for extinction and persistence in the mean of the 

three species (Rihan et al. 2022). To examine delay models in 

population dynamics, we used the model adopted by Rihan 

(2021). Few studies have investigated the effect of prey 

maturation on a predator–prey model through mathematical 

modelling. Predation of mature prey can be evaluated using 

delay differential equations (Kumar et al., 2021). Time lag is 

a crucial factor that should be included in the mathematical 

model to examine the dynamic behaviour of these types of 

biological systems (Kumar et al., 2022). 

 

No study has used the delay model for studying the 

dynamics of prey–predator systems. Thus, this study 

examined the dynamics of multiteam prey–predator systems 

by using delay differential equations.    

 

2. Mathematical Model 
 

This study examined the dynamics of a two-prey one-

predator delay differential model where both preys support 

each other to prevent predation. The predator is expected to 

take time τ during the gestation phase in this scenario. Thus, 

the model can be represented as follows: 
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This study examined the dynamics of a two-prey one-
predator delay differential model where both preys support 
each other to prevent predation. The predator is expected to take 

time τ during the gestation phase in this scenario. Thus, the model 
can be represented as follows: 

 
 

𝑑𝑃𝑟1(𝑡)

𝑑𝑡
=  𝑎1𝑃𝑟1(𝑡)(1 − 𝑃𝑟1(t)) − 𝑃𝑟1(𝑡)𝑃𝑟3(𝑡) + 𝑃𝑟3(𝑡)𝑃𝑟2(𝑡)𝑃𝑟1(𝑡)                   (1) 

𝑑𝑃𝑟2(𝑡)

𝑑𝑡
=  𝑏1𝑃𝑟2(𝑡)(1 − 𝑃𝑟2(t)) − 𝑃𝑟2(𝑡)𝑃𝑟3(𝑡) + 𝑃𝑟3(𝑡)𝑃𝑟2(𝑡)𝑃𝑟1(𝑡)                   (2) 

𝑑𝑃𝑟3(𝑡)

𝑑𝑡
=  − 𝑐1 𝑃𝑟3

2 (𝑡) + 𝑑1𝑃𝑟1(𝑡 − 𝜏)𝑃𝑟3(𝑡) + 𝑒1𝑃𝑟2(𝑡 − 𝜏)𝑃𝑟3(𝑡)                    (3) 

 
 

where τ > 0 is the lag time necessary for the predator’s 
gestation period; Pr1 (t) and Pr2 (t) are the populations of the two 
teams of preys, respectively; and Pr3 (t) is the population of 
predators. All the parameters have positive values, that is, the 

values of a1, b1, c1, d1, and e1 are more than zero. The system 
(Poole, 1974; Vance, 1978; Abrams et al., 1993) is related to the 
following starting functions: 

 
 

(𝑃𝑟1(𝜃), 𝑃𝑟2(𝜃), 𝑃𝑟3(𝜃)) ∈  𝐶+ = 𝐶((−𝜏, 0), 𝑅+
3), 𝑃𝑟3(0),  𝑃𝑟2(0), 𝑃𝑟1(0) > 0 

 
 
The variables and parameters considered in the model by Poole (1974) and Abrams et al. (1993) are listed in Table 1. 
 

Table 1. Description of variables and parameters 

Variables/Parameters Description 

𝑃𝑟1 First prey population 

𝑃𝑟2 Second prey population 

𝑃𝑟3 Predator population 

𝑎1 Natural growth rate of 𝑃𝑟1 

𝑏1 Natural growth rate of 𝑃𝑟2 

𝑐1 Death rate of the predator population due to mutual competition. 

𝑑1 Rate of predation of 𝑃𝑟1 

𝑒1 Rate of predation of 𝑃𝑟2 

𝜏 Delay parameter 

 
2.1 Equilibrium Point 

 
The systems (Poole, 1974; Vance, 1978; Abrams et al., 1993) have eight equilibria with specific nonnegativity requirements. In this 

part, we focus only on the stability and local Hopf bifurcation of the inner equilibrium because the other seven equilibria do not exhibit any 
effect of delay on the stability of results. To calculate the equilibrium point, equate equation [1] to zero 

 
𝑑𝑃𝑟1
𝑑𝑡

=  0 

𝑎1𝑃𝑟1 − 𝑎1 𝑃𝑟1
2 − 𝑃𝑟1𝑃𝑟3 + 𝑃𝑟1𝑃𝑟2𝑃𝑟3 =  0 

𝑃𝑟1(𝑎1 − 𝑎1  𝑃𝑟1 − 𝑃𝑟3 + 𝑃𝑟2𝑃𝑟3) =  0 

Either   𝑃𝑟1 = 0  𝑜𝑟 𝑎1 − 𝑎1  𝑃𝑟1 − 𝑃𝑟3 + 𝑃𝑟2𝑃𝑟3 =  0 

𝑑𝑃𝑟2
𝑑𝑡

=  0 

𝑏1𝑃𝑟2 − 𝑏1 𝑃𝑟2
2 − 𝑃𝑟2𝑃𝑟3 + 𝑃𝑟1𝑃𝑟2𝑃𝑟3 = 0 

𝑃𝑟2(𝑏1 − 𝑏1 𝑃𝑟2 − 𝑃𝑟3 + 𝑃𝑟1𝑃𝑟3 = 0 
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𝑑𝑃𝑟3
𝑑𝑡

=  0 

− 𝑐1 𝑃𝑟3
2 + 𝑑1𝑃𝑟1𝑃𝑟3 + 𝑒1𝑃𝑟2𝑃𝑟3 = 0 

𝑃𝑟3(− 𝑐1 𝑃𝑟3 + 𝑑1𝑃𝑟1 + 𝑒1𝑃𝑟2)  = 0 

 

As 𝑃𝑟1  ≠ 0, 𝑃𝑟2  ≠ 0, 𝑃𝑟3  ≠ 0 so we have three equations in 𝑃𝑟1, 𝑃𝑟2, 𝑃𝑟3 

 

𝑎1 − 𝑎1  𝑃𝑟1 − 𝑃𝑟3 + 𝑃𝑟2𝑃𝑟3 =  0 

𝑎1(1 − 𝑃𝑟1) + (−1 + 𝑃𝑟2)𝑃𝑟3 =  0                                                 (4) 

𝑏1 − 𝑏1 𝑃𝑟2 − 𝑃𝑟3 + 𝑃𝑟1𝑃𝑟3 = 0 

𝑏1(1 − 𝑃𝑟2) + (−1 + 𝑃𝑟1)𝑃𝑟3 = 0                                                  (5) 

− 𝑐1 𝑃𝑟3 + 𝑑1𝑃𝑟1 + 𝑒1𝑃𝑟2  = 0                                                     (6) 

 

Multiply (4) by −(−1 + 𝑃𝑟1) and (5) by (−1 + 𝑃𝑟1) then add 

 

𝑎1(1 − 𝑃𝑟1)(−)(−1 + 𝑃𝑟1) − (−1 + 𝑃𝑟1)(−1 + 𝑃𝑟2)𝑃𝑟3 = 0 

𝑏1(1 − 𝑃𝑟1)(−1 + 𝑃𝑟2) + (−1 + 𝑃𝑟1)(−1 + 𝑃𝑟2)𝑃𝑟3 = 0 

 

Add these equations 

𝑎1(1 − 𝑃𝑟1)(1 − 𝑃𝑟1) + 𝑏1(1 − 𝑃𝑟1)(−1 + 𝑃𝑟2) = 0 

𝑎1(1 − 𝑃𝑟1)
2 − 𝑏1(1 − 𝑃𝑟2)

2 = 0 

𝑎1(1 − 𝑃𝑟1)
2 =  𝑏1(1 − 𝑃𝑟2)

2 

𝑎1
𝑏1
(1 − 𝑃𝑟1)

2 = 𝑏1(1 − 𝑃𝑟2)
2 

Taking square root 

√
𝑎1
𝑏1
(1 − 𝑃𝑟1) = (1 − 𝑃𝑟2) 

𝑃𝑟2 =  1 − √
𝑎1
𝑏1
 (1 − 𝑃𝑟1) 

Put this value in (5) 

 

[1 − {1 − √
𝑎1
𝑏1
 (1 − 𝑃𝑟1)}] 𝑏1 + (−1 + 𝑃𝑟1)𝑃𝑟3 = 0 

[1 − 1 + √
𝑎1
𝑏1
 (1 − 𝑃𝑟1)] 𝑏1 + (−1 + 𝑃𝑟1)𝑃𝑟3 = 0 

𝑏1 [√
𝑎1
𝑏1
 (1 − 𝑃𝑟1)] + (−1 + 𝑃𝑟1)𝑃𝑟3 = 0 

√𝑎1𝑏1(1 − 𝑃𝑟1) + (−1 + 𝑃𝑟1)𝑃𝑟3 = 0 

(−1 + 𝑃𝑟1)𝑃𝑟3 = −√𝑎1𝑏1 (1 − 𝑃𝑟1) 

(−1 + 𝑃𝑟1)𝑃𝑟3 = √𝑎1𝑏1 (−1 + 𝑃𝑟1) 

𝑃𝑟3 = √𝑎1𝑏1 
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Let 𝐸∗(𝑃𝑟1
∗ ,  𝑃𝑟2

∗ ,  𝑃𝑟3
∗ ) denote the interior equilibrium  

where 

𝑃𝑟3
∗ = √𝑎1𝑏1, 𝑃𝑟2

∗ =  
𝑐1 √𝑎1𝑏1−𝑑1(1−√𝑏1 𝑎1⁄ )

𝑒1 + 𝑑1√𝑏1𝑎1
, 𝑃𝑟1

∗ = 

𝑏1𝑐1 + 𝑒1 (1 − √
𝑏1
𝑎1
)

𝑒1 + 𝑑1√
𝑏1
𝑎1

 

𝑐1√𝑎1𝑏1 ≤ 𝑑1 + 𝑒, 𝑐1𝑎1 + 𝑑1  >  𝑑1√𝑏1 𝑎1⁄ , 𝑐1𝑏1 + 𝑒1 > 𝑒1√𝑎1 𝑏1⁄  

 
2.2 Stability 

 
Now, we calculate stability of the aforementioned system of equation 

𝑑𝑃𝑟1
𝑑𝑡

=  𝑎1𝑃𝑟1 − 𝑎1 𝑃𝑟1
2 − 𝑃𝑟1𝑃𝑟3 + 𝑃𝑟1𝑃𝑟2𝑃𝑟3 

𝑑𝑃𝑟2
𝑑𝑡

=  𝑏1𝑃𝑟2 − 𝑏1 𝑃𝑟2
2 − 𝑃𝑟2𝑃𝑟3 + 𝑃𝑟1𝑃𝑟2𝑃𝑟3 

𝑑𝑃𝑟3
𝑑𝑡

=  − 𝑐1 𝑃𝑟3
2 + 𝑑1𝑃𝑟1(𝑡 − 𝜏)𝑃𝑟3 + 𝑒1𝑃𝑟2(𝑡 − 𝜏)𝑃𝑟3 

Differentiation w.r.t. 𝑃𝑟1 

𝑚1 =  𝑎1 − 2𝑎1𝑃𝑟1 − 𝑃𝑟3 + 𝑃𝑟2𝑃𝑟3, 𝑚2 =  𝑃𝑟2𝑃𝑟3,        𝑚3 = 𝑑1𝑃𝑟3𝑒
−𝜆𝜏  

Differentiation w.r.t. 𝑃𝑟2 

𝑚4 = 𝑃𝑟1𝑃𝑟3, 𝑚5 = 𝑏1 − 2𝑏1𝑃𝑟2 − 𝑃𝑟3 + 𝑃𝑟1𝑃𝑟3,              𝑚6 =  𝑒1𝑃𝑟3𝑒
−𝜆𝜏 

Differentiation w.r.t. 𝑃𝑟3 

𝑚7 = − 𝑃𝑟1 + 𝑃𝑟1𝑃𝑟2, 𝑚8 = −𝑃𝑟2 + 𝑃𝑟1𝑃𝑟2,       𝑚9 = −2𝑐1𝑃𝑟3 

Let 𝑣1 = 𝑃𝑟1 − 𝑃𝑟1
∗ , 𝑣2 = 𝑃𝑟2𝑃𝑟2

∗  and 𝑣3 =  𝑃𝑟3𝑃𝑟3
∗ then equations [1], [2] and [3] can be expressed in this form 

𝑑𝑣1
𝑑𝑡

=  −𝑎1𝑃𝑟1
∗ − 𝑃𝑟1

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟3

∗ 𝑣2 − 𝑎1𝑣1
2 − (1 − 𝑃𝑟2

∗ )𝑣1𝑣3 + 𝑃𝑟1
∗ 𝑣2𝑣3 + 𝑃𝑟3

∗ 𝑣1𝑣2

+ 𝑣1𝑣2𝑣3                                                                                                                            (7) 

𝑑𝑣2
𝑑𝑡

=  −𝑏1𝑃𝑟2
∗ 𝑣2 − 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟2
∗ 𝑃𝑟3

∗ 𝑣1 − 𝑏1𝑣2
2 − (1 − 𝑃𝑟1

∗ )𝑣2𝑣3 + 𝑃𝑟2
∗ 𝑣1𝑣2 + 𝑃𝑟3

∗ 𝑣1𝑣2

+ 𝑣1𝑣2𝑣3                                                                                                       (8) 

𝑑𝑣3
𝑑𝑡

=  −𝑐1𝑃𝑟3
∗ 𝑣3 − 𝑑1𝑃𝑟3

∗ 𝑣1(𝑡 − 𝜏) + 𝑒1𝑃𝑟3
∗ 𝑣2(𝑡 − 𝜏) − 𝑐1𝑣3

2 − 𝑑1𝑣1(𝑡 − 𝜏)𝑣3

+ 𝑒1𝑣2(𝑡 − 𝜏)𝑣3                                                                                                              (9) 

 
The stability of the equilibrium 𝐸∗(𝑃𝑟1

∗ ,  𝑃𝑟2
∗ ,  𝑃𝑟3

∗ ) can be examined by investigating the stability of the origin for equations [7], [8], and [9]. 
Now, we compute the linearised system’s characteristics equations [7], [8], and [9] at (0, 0, 0) 

 

|

𝜆 − 𝑚1 −𝑚2 −𝑚3

−𝑚4 𝜆 − 𝑚5 −𝑚6

−𝑚7 −𝑚8 𝜆 − 𝑚9

| = 0 

|

𝜆 − (𝑎1 − 2𝑎1𝑃𝑟1 − 𝑃𝑟3 + 𝑃𝑟2𝑃𝑟3) −𝑃𝑟2𝑃𝑟3 −𝑑1𝑃𝑟3𝑒
−𝜆𝜏

−𝑃𝑟1𝑃𝑟3 𝜆 − (𝑏1 − 2𝑏1𝑃𝑟2 − 𝑃𝑟3 + 𝑃𝑟1𝑃𝑟3) −𝑒1𝑃𝑟3𝑒
−𝜆𝜏

𝑃𝑟1 − 𝑃𝑟1𝑃𝑟2 𝑃𝑟2 − 𝑃𝑟1𝑃𝑟2 𝜆 + 2𝑐1𝑃𝑟3

| = 0 

After simplification, we obtain the characteristic equation 

𝜆3 + 𝑋𝜆2 + 𝑌1𝜆 + 𝑒
−𝜆𝜏(𝑌2𝜆 + 𝑍2) = 0                                            (10) 

When τ = 0, equation [10] becomes 

𝜆3 + 𝑋𝜆2 + (𝑌1 + 𝑌2)𝜆 + 𝑍2 = 0                                                  (11) 

The Routh–Hurwitz criteria implies that with τ = 0, the equilibrium point 𝐸∗ is locally asymptotically stable if 
(𝑯𝟏)𝑋 > 0, (𝑌1 + 𝑌2) > 0, 𝑍2 > 0, 𝑋( 𝑌1 + 𝑌2) > 𝑍2 ℎ𝑜𝑙𝑑 
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Let us suppose that the condition in (𝑯𝟏) is satisfied. Then, equation [11] with 𝜏 =  𝜏𝑗(𝑗 = 0, 1, …… ) has a simple pair of conjugate purely 

imaginary roots ±𝑖𝜔0 
 

𝜏𝑗 =  
1

𝜔0
[𝑎𝑟𝑐𝑐𝑜𝑠

𝜔0
2(𝜔0

2𝑌2 + 𝑍2𝑋 − 𝑌1𝑌2)

𝑌2
2𝜔0

2 + 𝑍2
2 + 2𝑗𝜋] 

We have the following conditions: 

1. If 𝜏 𝜖 [0, 𝜏0), all the roots of equation [11] have negative real parts. 
2. If 𝜏 = 𝜏0, the equation [11] has a pair of conjugate purely imaginary roots ±𝑖𝜔0 and real part is negative for all other solutions. 

Proof If 𝜆 = 0 is a solution of (11) if 𝑍2 = 0. This condition contradicts the third requirement stated in (𝑯𝟏), implying that 𝜆 = 0 is not a 
solution of [11]. Assume that for some 𝜏 ≥ 0, 𝑖𝜔 with 𝜔 > 0 is a solution of [11]. 

 

−𝑖 𝜔3 − 𝑋𝜔2 + 𝑖𝑌1𝜔 + 𝑒
−𝜔𝜏(𝑖𝑌2𝜔 + 𝑍2) = 0 

−𝑖 𝜔3 − 𝑋𝜔2 + 𝑖𝑌1𝜔 + (𝑐𝑜𝑠 𝜔𝜏 − 𝑖𝑠𝑖𝑛 𝜔𝜏) (𝑖𝑌2𝜔 + 𝑍2) = 0 

𝑖 (−𝜔3 + 𝑌1𝜔 + 𝑌2𝜔𝑐𝑜𝑠 𝜔𝜏 − 𝑍2𝑠𝑖𝑛 𝜔𝜏) + (−𝑋𝜔
2 + 𝑍2𝑐𝑜𝑠 𝜔𝜏 + 𝑌2𝜔𝑠𝑖𝑛 𝜔𝜏) = 0 

Separating real and imaginary parts 

−𝜔3 + 𝑌1𝜔 + 𝑌2𝜔𝑐𝑜𝑠 𝜔𝜏 − 𝑍2𝑠𝑖𝑛 𝜔𝜏 = 0                                         (12) 

−𝑋𝜔2 + 𝑍2𝑐𝑜𝑠 𝜔𝜏 + 𝑌2𝜔𝑠𝑖𝑛 𝜔𝜏 = 0                                            (13) 

which gives   𝜔6 + 𝛼𝜔4 + 𝛽𝜔2 + 𝛾 = 0                                                    (14) 

where  𝛼 = 𝑋2 − 2𝑌1, 𝛽 =  𝑌1
2 − 𝑌2

2, 𝛾 =  −𝑍2
2 

Let 𝑙 =  𝜔2, then equation [14] becomes 

𝑙3 + 𝛼𝑙2 + 𝛽𝑙 + 𝛾 = 0                                                       (15) 

Supposed 𝑙1, 𝑙2 𝑎𝑛𝑑 𝑙3 are the roots of equation [15] and connected by 

Sum of the roots                         𝑙3 + 𝑙2 + 𝑙1 = −𝛼                                                        (16) 

Product of the roots                        𝑙3 𝑙2 𝑙1 = −𝛾                                                             (17) 

Thus, equation [17] has either one or three positive real roots. 

Depending on the determinant Δ1of the equation [15] 

where Δ1 = (
𝑆

2
)
2
+ (

𝑇

3
)
3

 and 𝑇 =  𝛽 −
1

3
𝛼2, 𝑆 =  

2

27
𝛼3 −

1

3
𝛼𝛽 + 𝛾 

Three situations are possible for the solution of [15]: 

a) If Δ1 > 0, then one real root and a pair of imaginary roots can be obtained for equation [15]. When the real root is positive, it can 
be written as follows: 

𝑙1 =  √
−𝑆

2
+ √ Δ1

3

+ √
−𝑆

2
− √ Δ1

3

−
1

3
𝛼 

b) If Δ1 = 0, all three real roots and two repeated roots are obtained for equation [15]. If 𝛼 > 0, we obtain only one positive root,  

𝑙1 = 2 √
−𝑆

2

3
−
1

3
𝛼. 𝐼𝑓 𝛼 < 0, we obtain only one positive root,  𝑙1 = 2 √

−𝑆

2

3
−
1

3
𝛼 for ,   √

−𝑆

2

3
> −

1

3
𝛼 and three positive real roots 

for  
𝛼

6
< √

−𝑆

2

3
< −

1

3
𝛼 , 𝑙1 = 2 √

−𝑆

2

3
−
1

3
𝛼,   𝑙2 = 𝑙3 = − √

−𝑆

2

3
−
1

3
𝛼 

c) If Δ1 < 0, we obtain all the three roots are real and distinct, 𝑙1 = 2√
|𝑇|

3
cos (

𝜉

3
) − 

𝛼

3
 

𝑙2 = √
|𝑇|

3
𝑐𝑜𝑠 (

𝜉

3
+
2𝜋

3
) −

𝛼

3
, 𝑙3 = 2√

|𝑇|

3
cos (

𝜉

3
+
4𝜋

3
) −

𝛼

3
 

Where cos 𝜉 = (−
𝑆

2√(
|𝑇|

3
)
3
), 0 < 𝜉 < 𝜋. Moreover, if 𝛼 > 0, only one positive root exists. Otherwise, if 𝛼 < 0, we obtain all three real 

positive roots or only one positive real root. It is equivalent to max (𝑙1, 𝑙2, 𝑙3) only when we obtain one positive real root. The number of 
positive real roots depends on the sign of  𝛼. Equation [15] has only one positive real root when 𝛼 ≥ 0 is present. Otherwise, we obtained 
three positive real roots. When  𝛼 =  𝑋2 − 2𝑌1 >  0,  one positive real root is obtained for [15]. Let the obtained positive real root be denoted 

by symbol 𝑙0. Then, equation [14] would have only one positive real root 𝜔0 = √𝑙0. From equation [13], we have 
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𝑐𝑜𝑠𝜔0𝜏 =  
𝜔0
2(𝜔0

2𝑌2 + 𝑍2𝑋 − 𝑌1𝑌2)

𝑌2
2𝜔0

2 + 𝑍2
2  

Express 

𝜏𝑗 =  
1

𝜔0
[𝑎𝑟𝑐𝑐𝑜𝑠

𝜔0
2(𝜔0

2𝑌2 + 𝑍2𝑋 − 𝑌1𝑌2)

𝑌2
2𝜔0

2 + 𝑍2
2 + 2𝑗𝜋]                         (18) 

where 𝑗 = 0, 1, 2, 3, 4, 5,….. ±𝑖𝜔0 obtained a root of equation [10] when   𝜏 =  𝜏𝑗 . 

Furthermore, if (𝐻1) standards are fulfilled, all the roots of equation [10] with 𝜏 = 0 have negative real values. We determine the outcomes 
of lemma1 by summarising the preceding discussion and using the lemma provided. The proof is completed with the following outcomes 
from theorem lemma 1. 
 
Theorem 2 Assume the condition in (H1) is fulfilled. If 𝜏 𝜖 [0, 𝜏0), then the zero solution of equations [7], [8], and [9] is asymptotically stable. 
Using the classic Hopf bifurcation theorem for retarded functional differential equations, we can obtain the following factors: 
 

Lemma 3. Let 𝑛(𝑙0) = (3𝑙0
2 + 2𝛼𝑙0 + 𝛽) ≠ 0 and condition in (𝐻1) are satisfied. For (𝑗 = 0, 1, … ), 𝜆(𝜏) =  𝛿(𝜏) + 𝑖𝜔(𝜏) is denoted as the 

solution of equation [10] that fulfils the condition 𝛿(𝜏𝑗) = 0,𝜔(𝜏𝑗) =  𝜔0 were 

 

𝜏𝑗 =  
1

𝜔0
[𝑎𝑟𝑐𝑐𝑜𝑠

𝜔0
2(𝜔0

2𝑌2 + 𝑍2𝑋 − 𝑌1𝑌2)

𝑌2
2𝜔0

2 + 𝑍2
2 + 2𝑗𝜋] 

 

Then, ±𝑖𝜔0 are pair of simple roots. If the transversality condition (𝐻1) 𝛿
′(𝜏𝐽) =  

𝑅𝑒 𝜆(𝜏)

𝑑𝜏
|
𝜆=𝑖𝜔0

≠ 0 holds good, we obtain a Hopf bifurcation 

for [7], (8) and (9) at 𝑣 = 0 𝑎𝑛𝑑 𝜏 =  𝜏𝑗 . 

Proof. Assume  𝜆 =  𝜆 (𝜏) is a solution of equation [10]. Put 𝜆 (𝜏) in [10] and differentiating with respect to 𝜏 on both sides, we get  
 

[(3𝜆2 + 2𝑋𝜆 + 𝑌1) + ((𝜆𝑌2 + 𝑍2)(−𝜏) + 𝑌2)𝑒
−𝜆𝜏]

𝑑𝜆

𝑑𝜏
=  𝜆(𝜆𝑌2 + 𝑍2)𝑒

−𝜆𝜏 

Thus 

(
𝑑𝜆

𝑑𝜏
)
−1 

= 
(3𝜆2 + 2𝑋𝜆 + 𝑌1)𝑒

𝜆𝜏

𝜆(𝜆𝑌2 + 𝑍2)
+

𝑌2
𝜆(𝜆𝑌2 + 𝑍2)

−
𝜏

𝜆
 

From [12]–[15], we have 

 

– 𝛼′(𝜏𝐽) = 𝑅𝑒 [
(3𝜆2 + 2𝑋𝜆 + 𝑌1)𝑒

𝜆𝜏

𝜆(𝜆𝑌2 + 𝑍2)
] + 𝑅𝑒 [

𝑌2
𝜆(𝜆𝑌2 + 𝑍2)

] 

=
1

Ω
[3𝜔0

6 + 2(𝑋2 − 2𝑌1)𝜔0
4 + (𝑌1

2 − 2𝑋𝑍2 − 𝑌2
2)𝜔0

2] 

=
1

Ω
(3𝜔0

6 + 2𝛼𝜔0
4 + 𝛽𝜔0

2) 

=
𝜔0
2

Ω
(3𝜔0

4 + 2𝛼𝜔0
2 + 𝛽) 

=
𝜔0
2

Ω
(3𝑙0

2 + 2𝛼𝑙0 + 𝛽) 

=
𝜔0
2

Ω
𝑛(𝑙0) 

 

where Ω = 𝑌2
2𝜔0

2 + 𝑍2
2 

𝑛(𝑙0) = 3𝑙0
2 + 2𝛼𝑙0 + 𝛽. Observed, when Ω > 0 and 𝜔0 > 0 

We find that 

Sign [𝛿′(𝜏𝐽)] = 𝑠𝑖𝑔𝑛[𝑛(𝑙0)] proves the theorem. 
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3. Direction Analysis and Stability of the Hopf Bifurcation Solution  

 
In the previous section, we observed that a set of solutions can be obtained as bifurcates from the favourable steady state E* at a 

crucial level of 𝜏. The direction, stability, and period of these bifurcating periodic solutions should be determined. We build precise equations 
defining the properties of the Hopf bifurcation at the critical value by using normal form theory and the centre manifold theorem at the 
critical point 𝜏𝑗   in this section. 

Normalizing delay value 𝜏 by the time scaling 𝑡 ⟶
𝑡

𝜏
 system [7], [8], and [9] is transformed into 

𝑑𝑣1
𝑑𝑡

=  −𝑎1𝑃𝑟1
∗ 𝑣1 − 𝑃𝑟1

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟3

∗ 𝑣2 − 𝑎𝑣1
2 − (1 − 𝑃𝑟2

∗ )𝑣1𝑣3 + 𝑃𝑟1
∗ 𝑣2𝑣3 + 𝑃𝑟3

∗ 𝑣1𝑣2

+ 𝑣1𝑣2𝑣3                                                                                                    (19) 

𝑑𝑣2
𝑑𝑡

=  −𝑏1𝑃𝑟2
∗ 𝑣2 − 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟2
∗ 𝑃𝑟3

∗ 𝑣1 − 𝑏𝑣2
2 − (1 − 𝑃𝑟1

∗ )𝑣2𝑣3 + 𝑃𝑟2
∗ 𝑣1𝑣3 + 𝑃𝑟3

∗ 𝑣1𝑣2

+ 𝑣1𝑣2𝑣3                                                                                             (20) 

𝑑𝑣3
𝑑𝑡

=  −𝑐1𝑃𝑟3
∗ 𝑣3 + 𝑑1𝑃𝑟3

∗ 𝑣1(𝑡 − 1) + 𝑒1𝑃𝑟3
∗ 𝑣2(𝑡 − 1) − 𝑐1𝑣3

2+𝑑1𝑣1(𝑡 − 1)𝑣3

+ 𝑒1𝑣2(𝑡 − 1)𝑣3                                                                                                    (21) 

Take phase plane 𝐶 = 𝐶((−1,0), 𝑅+
3). WLOG, denote the critical value 𝜏𝑗  by 𝜏0. If 𝜏 =  𝜏0 + 𝜎, then 𝜎 = 0 is a value for Hopf bifurcation for 

equations [19]–[21]. For the simplicity of notations, we rewrite [19]–[21] in this form 
  

𝑣′(𝑡) =  𝐿𝜎(𝑣𝑡) + 𝐺(𝜎, 𝑣𝑡)                                                            (22) 

where 𝑣(𝑡) =  𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡) 𝜖 𝑅
3, 𝑣𝑡(𝜃) = 𝑣(𝑡 + 𝜃) and 

𝐿𝜎𝜑 = (𝜏0 + 𝜎) [

−𝑎1𝑃𝑟1
∗ 𝑃𝑟1

∗ 𝑃𝑟3
∗ −𝑃𝑟1

∗ + 𝑃𝑟1
∗ 𝑃𝑟2

∗

𝑃𝑟2
∗ 𝑃𝑟3

∗ −𝑏1𝑃𝑟2
∗ −𝑃𝑟2

∗ + 𝑃𝑟1
∗ 𝑃𝑟2

∗

0 0 −𝑐1𝑃𝑟3
∗

] [

𝜑1 (0)

𝜑2(0)

𝜑3(0)
] + 

(𝜏0 + 𝜎) [
0 0 0
0 0 0

𝑑1𝑃𝑟3
∗ 𝑒1𝑃𝑟3

∗ 0
] [

𝜑1(−1)

𝜑2(−1)
𝜑3(−1)

] and 

𝐺(𝜎, 𝜑) = (𝜏0 + 𝜎) [

𝐺1
𝐺2
𝐺3

] respectively, were 

𝐺1 =  −𝑎1𝜑1
2(0) − (1 − 𝑃𝑟2

∗ )𝜑1(0)𝜑3(0) + 𝑃𝑟1
∗ 𝜑2(0)𝜑3(0) + 𝑃𝑟3

∗ 𝜑2(0)𝜑1(0) + 𝜑3(0)𝜑2(0)𝜑1(0), 

𝐺2 =  −𝑏1𝜑1
2(0) − (1 − 𝑃𝑟1

∗ )𝜑3(0)𝜑2(0) + 𝑃𝑟2
∗ 𝜑3(0)𝜑1(0) + 𝑃𝑟3

∗ 𝜑2(0)𝜑1(0) + 𝜑3(0)𝜑2(0)𝜑1(0), 

𝐺3 =  −𝑐1𝜑3
2(0) + 𝑑1𝜑1(−1)𝜑3(0) + 𝑐1𝜑2(−1)𝜑3(0), 

𝜑(0) = (𝜑1(𝜃), 𝜑2(𝜃), 𝜑3(𝜃))
𝑇𝜖 𝐶(𝐶 − 1, 0), 𝑅). 

Using the Riesz representation theorem, we can find a function ∢(𝜃, 𝜎) of bounced variation for 𝜃 𝜖 [−1, 0) as  

𝐿𝜎𝜑 =  ∫ 𝑑∢(𝜃, 0)
0

−1

𝜑(0)𝑓𝑜𝑟 𝜑 𝜖 𝐶. 

We choose 

∢(𝜃, 𝜎) = (𝜏0 + 𝜎) [

−𝑎1𝑃𝑟1
∗ 𝑃𝑟1

∗ 𝑃𝑟3
∗ −𝑃𝑟1

∗ + 𝑃𝑟2
∗ 𝑃𝑟1

∗

𝑃𝑟2
∗ 𝑃𝑟3

∗ −𝑏1𝑃𝑟2
∗ −𝑃𝑟2

∗ + 𝑃𝑟2
∗ 𝑃𝑟1

∗

0 0 −𝑐1𝑃𝑟3
∗

] 𝜒(𝜃) + 

(𝜏0 + 𝜎) [
0 0 0
0 0 0

𝑑1𝑃𝑟3
∗ 𝑒1𝑃𝑟3

∗ 0
] 𝜒(𝜃 + 1) 

where 𝜒 is the Delta Dirac function for 𝜑 𝜖 𝐶([−1, 0], 𝑅+
3), 

Let us define a function 

𝐴(𝜎)𝜑 =  {

𝑑𝜑(0) 𝜃 𝜖 [−1,0)

∫ 𝑑 ≮ (𝜃, 𝜑)
0

−1

𝜃 = 0
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H (𝜎) 𝜑 = {
0 𝜃 𝜖[−1, 0)

𝐺(𝜎, 𝜑) 𝜃 = 0
 

Then, the system (22) is equivalent to 

𝑣𝑡
′ = 𝑋(𝜎)𝑣𝑡 + 𝐻(𝜎)𝑣𝑡                                                              (23) 

For 𝜀 𝜖 𝐶′([−1,0], 𝑅+
3), define 

𝑋∗𝜖(𝑠) =  

{
 
 

 
 −𝑑𝜖(𝑠)

𝑑𝜃
𝑠 𝜖 [−1,0,

∫ 𝑑 ≮𝑇 (−1,0)𝜀(−𝑡)
0

−1

𝑠 = 0

 

The bilinear inner product is as follows: 

< 𝜀(𝑠), 𝜑(𝜃) > = ∈ (0) 𝜑(0) − ∫ ∫ 𝜖(𝑣 − 𝜃)𝑑 ≮ (𝜃)𝜑(𝑣)𝑑𝑣                        (24)
0

𝑣=0

0

−1

 

𝑋∗ 𝑎𝑛𝑑 𝑋(0)are adjoint operators; thus, 𝑖𝜔0 are the eigen values of 𝑋(0). They are the eigen values of 𝑋∗. Suppose that 𝛽(𝜃) =  𝛽(0)𝑒𝑖𝜔0𝜃is 
an eigen vector of 𝑋(0) corresponding to the eigenvalue 𝑖𝜔0. Then, 𝑋(0) = 𝑖𝜔0𝛽(𝜃). When 𝜃 = 0, we obtain 

[𝑖𝜔0𝐼 − ∫ 𝑑 ≮ (𝜃)𝑒𝑖𝜔0𝜃
0

−1

] 𝛽(0) = 0 

which yields 𝛽(0) − (1, 𝑥1𝑦1)
𝑇 , 

where 

𝑥1 = 
(𝑃𝑟1

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗ )𝑃𝑟3
∗ 𝑃𝑟2

∗ + (𝑃𝑟2
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗ )(𝑖𝜔0 + 𝑎1𝑃𝑟1

∗ )

𝑃𝑟1
∗ 𝑃𝑟3

∗ (𝑃𝑟2
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗ ) − (𝑃𝑟1

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗ )(𝑖𝜔0 + 𝑃𝑟2
∗ 𝑏1)

 

𝑦1 =  
𝑃𝑟2
∗ 𝑃𝑟3 

∗2𝑃𝑟1
∗ − (𝑖𝜔0 + 𝑎1𝑃𝑟1

∗ )(𝑖𝜔0 + 𝑏1𝑃𝑟2
∗ )

𝑃𝑟1
∗ 𝑃𝑟3

∗ (𝑃𝑟2
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗ ) − (𝑃𝑟1

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗ )(𝑖𝜔0 + 𝑃𝑟2
∗ 𝑏1)

 

Similarly, it can be verified that 𝛽∗(𝑠) = 𝐷(1, 𝑥2𝑦2)𝑒
𝑖𝜔0𝜏0𝑠is the eigen vector of 𝑋∗corresponding to −𝑖𝜔0, 

where 

𝑥2 =  
𝑃𝑟2
∗ 𝑃𝑟3

∗ (𝑃𝑟1
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗ ) + (𝑃𝑟2

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗ )(𝑎1𝑃𝑟1
∗ − 𝑖𝜔0)

𝑃𝑟1
∗ 𝑃𝑟3

∗ (𝑃𝑟2
∗ − 𝑃𝑟1

∗ 𝑃𝑟2
∗ ) − (𝑃𝑟1

∗ − 𝑃𝑟1
∗ 𝑃𝑟2

∗ )(𝑏1𝑃𝑟2
∗ − 𝑖𝜔0)

 

𝑦2 =  
𝑃𝑟1
∗ 𝑃𝑟2

∗ 𝑃𝑟3
∗2 − (𝑎1𝑃𝑟1

∗ − 𝑖𝜔0)(𝑏1𝑃𝑟2
∗ − 𝑖𝜔0)

𝑃𝑟1
∗ 𝑃𝑟3

∗ (𝑃𝑟2
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗ ) − (𝑃𝑟1

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗ )(𝑏1𝑃𝑟2
∗ − 𝑖𝜔0)

 

To assume < 𝛽∗(𝑠), 𝛽(𝜃) ≥ 1, we have to calculate the value of D. From [24], we obtain < 𝛽∗(𝑠), 𝛽(𝜃) > 

= �̅�(1, �̅�2, �̅�2)(1, 𝑥1, 𝑦1)
𝑇 −∫ ∫ �̅�(

𝜃

𝑣=0

0

−1

1, �̅�2, �̅�2) 𝑒
−𝑖𝜔0𝜏0(𝑣−𝜃)𝑑 ≮ (𝜃)(1, 𝑥1, 𝑦1)

𝑇𝑒−𝜔0𝜏0𝑑𝑣 

= �̅�{1 + 𝑥1�̅�2 + 𝑦1�̅�2 −∫ (
0

−1

1, �̅�2, �̅�2) 𝜃𝑒
𝑖𝜔0𝜏0𝜃𝑑 ≮ (𝜃)(1, 𝑥1, 𝑦1)

𝑇} 

= �̅�{1 + 𝑥1�̅�2 + 𝑦1�̅�2 − 𝜏0 �̅�2𝑃𝑟3
∗ (𝑑1𝑥1 + 𝑒1𝑦2)𝑒

𝑖𝜔0𝜏0} 

Hence, we can choose 

�̅� =
1

1 + 𝑥1�̅�2 + 𝑦1�̅�2 + 𝜏0�̅�2𝑃𝑟3
∗ (𝑑1𝜎1+𝑒1𝑦)𝑒

𝑖𝜔0𝜏0
 

Such that 

< 𝛽∗(𝑠), 𝛽(𝜃) ≥ 1,< 𝛽∗(𝑠), 𝛽(𝜃) = 0 

Continue the coordinates defining the vector by following the algorithm and using the same notations as their manifold 𝑐0 at 𝜎 = 0. Let 𝑣𝑡 
be a solution of equation [23] with 𝜎 = 0. Define 
 

𝑚(𝑡) = < 𝛽∗(𝑠), 𝑣𝑡(𝜃) >                                                        (25) 

𝑉(𝑡, 𝜃) =  𝑣𝑡(𝜃) − 2𝑅𝑒 𝑚(𝑡)𝛽(𝜃)                                                   (26) 

According to manifold, we obtain centre 𝐶0. Accordingly, 

𝑉(𝑡, 𝜃) = 𝑉(𝑚(𝑡) �̅�(𝑡), 𝜃), 
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where 

𝑉(𝑚, �̅�, 𝜃) =  𝑉20(𝜃)
𝑚2

2
+ 𝑉11(𝜃)𝑚�̅� + 𝑉02(𝜃)

�̅�2

2
+⋯ 

𝑚 and �̅� are local values for the manifold centre 𝐶0 in the direction of 𝛽∗ and �̅�∗. When 𝑉 is real, 𝑣𝑡 is real. We assume only the real solution. 
For solution 𝑣𝑡  ∈  𝐶0 of [23], since 𝜎 = 0, 

𝑚′(𝑡) = 𝑖𝜔0𝜏0𝑚+< �̅�
∗(𝜃), 𝐺(0, 𝑉(𝑚, �̅�, 𝜃) + 2𝑅𝑒{𝑚(𝑡)𝛽(𝜃)}) > 

= 𝑖𝜔0𝜏0𝑚 + �̅�∗(0)𝐺(0, 𝑉(𝑚, �̅�, 0) + 2𝑅𝑒{𝑚(𝑡)𝛽(𝜃)}) 

=  𝑖𝜔0𝜏0𝑚 + �̅�∗(0) 𝐺0(𝑚, �̅�)                                                (27) 

where 𝑠(𝑚, �̅�) =  �̅�∗(0)  𝐺0(𝑚, �̅�) 

= 𝑠20(𝜃)
𝑚2

2
+ 𝑠11(𝜃)𝑚�̅� + 𝑠02(𝜃)

�̅�2

2
+ 𝑠21

𝑚2�̅�

2
+⋯                        (28) 

Noticing 

𝑣𝑡(𝜃) = (𝑣𝑖𝑡 , 𝑣2𝑡 , 𝑣3𝑡) = 𝑉(𝑡, 𝜃) +𝑚𝛽(𝜃) + �̅��̅�(𝜃) 

and 𝛽(0) = (1, 𝑥1, 𝑦1)
𝑇𝑒𝑖𝜔0𝜏0𝜃 , we have 

𝑣1𝑡(0) = 𝑚 + �̅� + 𝑉20
(1)𝑚

2

2
+ 𝑉11

(1)(0)𝑚�̅� + 𝑉02
(1)(0)

�̅�2

2
+ ⋯, 

𝑣2𝑡(0) = 𝑥1𝑚 + �̅�1�̅� + 𝑉20
(2)𝑚

2

2
+ 𝑉11

(2)(0)𝑚�̅� + 𝑉02
(2)(0)

�̅�2

2
+ ⋯, 

𝑣3𝑡(0) = 𝑦1𝑚 + �̅�1�̅� + 𝑉20
(3)
(0)

𝑚2

2
+ 𝑉11

(3)(0)𝑚�̅� + 𝑉02
(3)(0)

�̅�2

2
+⋯, 

𝑣1𝑡(−1) = 𝑚𝑒
−𝑖𝜔0𝜏0 + �̅�𝑒𝑖𝜔0𝜏0 + 𝑉20

(1)
(−1)

𝑚2

2
+ 𝑉11

(1)(−1)𝑚�̅� + 𝑉02
(1)(−1)

�̅�2

2
+⋯, 

𝑣2𝑡(−1) = 𝑥1𝑒
−𝑖𝜔0𝜏0 + �̅�𝑒𝑖𝜔0𝜏0�̅� + 𝑉20

(2)
(−1)

𝑚2

2
+ 𝑉11

(2)(−1)𝑚�̅� + 𝑉02
(2)(−1)

�̅�2

2
+⋯, 

Comparing coefficients with (28), we have 

𝑠20 =  −2𝜏0�̅�[𝑎1 + (1 − 𝑃𝑟2
∗ )𝑦1 − 𝑥1(𝑃𝑟1

∗ 𝑦1 + 𝑃𝑟3
∗ ) + �̅�2(𝑏1𝑥1

2 + (1 − 𝑃𝑟1
∗ )𝑥1𝑦1) − 𝑥1𝑃𝑟3

∗ − 𝑦1𝑃𝑟2
∗ + �̅�2𝑦1(𝑐1𝑦1 − 𝑑1𝑒

−𝑖𝜔0𝜏0 −

𝑒1𝑥1𝑒
−𝑖𝜔0𝜏0)], 

 

𝑠11 = −2𝜏0�̅�[𝑎1 + (1 − 𝑃𝑟2
∗ )𝑅𝑒{𝑦1} − 𝑃𝑟1

∗ 𝑅𝑒{�̅�1𝑥1} − 𝑃𝑟3
∗ 𝑅𝑒{𝑥1} + �̅�2(𝑥1�̅�1𝑏1 + (1 − 𝑃𝑟1

∗ )𝑅𝑒{𝑥1�̅�1} − 𝑃𝑟2
∗ 𝑅𝑒{�̅�1} − 𝑃𝑟3

∗ {𝑥1} +

�̅�2(𝑐1𝑦1�̅�1 − 𝑑1𝑅𝑒{𝑦1𝑒
𝑖𝜔0𝜏0} − 𝑒1𝑅𝑒{𝑦1�̅�1𝑒

𝑖𝜔0𝜏0})], 

𝑠02 =  −2𝜏0�̅�[𝑎1 + (1 − 𝑃𝑟2
∗ )�̅�1 − �̅�1(𝑃𝑟1

∗ �̅�1 + 𝑃𝑟3
∗ ) + �̅�2(𝑏1�̅�1

2 + (1 − 𝑃𝑟1
∗ )�̅�1�̅�1) − �̅�1𝑃𝑟3

∗ − �̅�1𝑃𝑟2
∗ + �̅�2�̅�1(𝑐1�̅�1 − 𝑑1𝑒

−𝑖𝜔0𝜏0)] 

𝑠21 = −2𝜏0�̅�[𝑎1 (𝑉20
(1)(0) + 2𝑉11

(1)(0)) + (1 − 𝑃𝑟2
∗ )(

1

2
 𝑉20

(1)(0)�̅�1 + 𝑉11
(1)(0)𝑦1 +

1

2
 𝑉20

(3)(0) + 𝑉11
(3)(0) − (2𝑅𝑒{𝑥1�̅�1} + 𝑥1𝑦1) −

𝑃𝑟1
∗ (

1

2
 𝑊20

(2)(0)�̅�1 +
1

2
 𝑉20

(3)(0)�̅�1 + 𝑉11
(2)(0)𝑦1 + 𝑉11

(3)(0)𝑥1) − 𝑃𝑟3
∗ (

1

2
 𝑉20

(2)(0) +
1

2
𝑉20
(1)(0)�̅�1 + 𝑉11

(2)(0) + 𝑉11
(1)(0)𝑥1) +

�̅�2 (𝑏1𝑉20
(2)(0)�̅�1 + 2𝑉11

(2)(0)𝑥1) + (1 − 𝑃𝑟1
∗ )(

1

2
𝑉20
(2)(0)�̅�1 + 𝑉11

(3)(0)𝑥1 − (2𝑅𝑒{𝑥1�̅�1} + 𝑥1𝑦1) − 𝑃𝑟2
∗ (

1

2
𝑉20
(1)(0)�̅�1 +

1

2
 𝑉20

(3)(0) +

𝑉11
(1)(0)𝑦1 + 𝑉11

(1)(0)𝑦1 + 𝑉11
(3)(0) − 𝑃𝑟3

∗ (
1

2
 𝑉20

2 (0) +
1

2
 𝑉20

(1)(0)�̅�1 + 𝑉11
(2)(0) + 𝑉11

(1)(0)𝑥1)) + �̅�2(𝑐1 (𝑉20
(3)(0)�̅�1 + 2𝑉11

(3)(0)𝑦1) −

𝑑1 (
1

2
𝑉20
(1)(−1)�̅�1 + 𝑉11

(1)(−1)𝑦1 +
1

2
𝑉20
(3)(0)𝑒𝑖𝜔0𝜏0 + 𝑉11

(3)(0)𝑒−𝑖𝜔0𝜏0) − 𝑒1(
1

2
𝑉20
(1)(−1)�̅�1 + 𝑉11

(2)(−1)𝑦1 +
1

2
𝑉20
(3)(0)�̅�1𝑒

𝑖𝜔0𝜏0 +

𝑉11
(3)
𝑥1𝑒

−𝑖𝜔0𝜏0))] 

Because of the presence of 𝑉20(𝜃) and 𝑉11(𝜃) in 𝑠21, we need to further compute them. From (23) and (26), we have 

𝑉′ =  𝑣𝑡
′ −𝑚′𝛽 − �̅�′𝛽 

= {
𝑋𝑉 − 2𝑅𝑒{�̅�∗(0)𝐺0𝛽(𝜃)}, 𝜃 𝜖 [−1, 0),

𝑋𝑉 − 2𝑅𝑒{�̅�∗(0)𝐺0𝛽(0)} + 𝐺0 𝜃 = 0
 

≜ 𝑋𝑉 +𝑁(𝑚,𝑚,̅̅ ̅ 𝜃),                                                                  (29) 
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where 

𝑁(𝑚,𝑚,̅̅ ̅ 𝜃) =  𝑁20(𝜃)
𝑚2

2
+ 𝑁11(𝜃)𝑚�̅� + 𝑁02(𝜃)

�̅�2

2
+ 𝑁21

𝑚2�̅�

2
+. . ,          (29) 

On the other hand, on 𝐶0near the origin 

𝑉′ = 𝑉𝑚𝑚
′ + 𝑉�̅��̅�

′ 

Expanding the aforementioned series and comparing the coefficient, we obtain 

[𝑋 − 2𝑖𝜔0𝐼]𝑉20(𝜃) =  −𝑁20(𝜃)                                                 (30) 

𝑋𝑉11(𝜃) =  −𝑁11(𝜃)                                                         (31) 

From (27), we know that for 𝜃 𝜖 [−1, 0), 

𝑁(𝑚, �̅�, 𝜃) =  −𝛽�̅�(0)�̅�0𝛽(𝜃) − 𝛽
∗(0)�̅�0�̅�(𝜃) =  −𝑠𝛽(𝜃) − �̅��̅�(𝜃). 

Comparing the coefficient with (30), we obtain 𝜃 𝜖 [−1, 0] that 

𝑁20(𝜃) =  −𝑠20𝛽(𝜃) − �̅�02�̅�(𝜃) 

𝑁11(𝜃) =  −𝑠11𝛽(𝜃) − �̅�11�̅�(𝜃) 

From (29), (30), and (31) and the definition of 𝑋, we obtain 

𝑉20(𝜃) = 2𝑖𝜔0𝜏0𝑉20(𝜃) + 𝑠20𝛽(𝜃) + �̅�02�̅�(𝜃) 

Solving for 𝑉20(𝜃), we obtain 

𝑉20(𝜃) =  
𝑖𝑠20
𝜔0𝜏0

𝛽(0)𝑒𝑖𝜔0𝜏0𝜃 +
𝑖�̅�02�̅�(0)

3𝜔0𝜏0
𝑒−𝑖𝜔0𝜏0𝜃 + 𝑃1𝑒

2𝑖𝜔0𝜏0𝜃 

Similarly, 

𝑉11(𝜃) =
−𝑖𝑠11
𝜔0𝜏0

𝛽(0)𝑒𝑖𝜔0𝜏0𝜃 +
𝑖�̅�11�̅�(0)

𝜔0𝜏0
𝑒−𝑖𝜔0𝜏0𝜃 + 𝑃2 

where 𝑃1and 𝑃𝑧 are both three-dimensional vectors and can be calculated by setting 𝜃 = 0 in 𝑁. Accordingly, we obtain  

𝑁(𝑚, �̅�, 𝜃) =  −2𝑅𝑒{�̅�∗(0)𝐺0𝛽(0)} + 𝐺0 

when 

𝑁20(𝜃) =  −𝑠20𝛽(𝜃) − �̅�02�̅�(𝜃) + 𝐺𝑚2 

𝑁11(𝜃) =  −𝑠11𝛽(𝜃) − �̅�11�̅�(𝜃) + 𝐹𝑚�̅�  

where 

𝐺0 = 𝐺𝑚2

𝑚2

2
+ 𝐺𝑚�̅�𝑚�̅� + 𝐺�̅�2

�̅�2

2
+⋯ 

Combining the definition of 𝑋, we obtain 

∫ 𝑑 ≮
0

−1

(𝜃)𝑉20(𝜃) = 2𝑖𝜔0𝜏0𝑉20(0) + 𝑠20𝛽(0) + �̅�02�̅�(0) − 𝐺𝑚2 

and 

∫𝑑 ≮ (𝜃)𝑉11(𝜃) =  𝑠11𝛽(0) − �̅�11�̅�(0) − 𝐺𝑚�̅�

0

−1

 

Notice that 

(𝑖𝜔0𝜏0𝐼 − ∫ 𝑒𝑖𝜔0𝜏0𝜃𝑑 ≮ (𝜃))𝛽(0) = 0
0

−1

 

and 

−𝑖𝜔0𝜏0𝐼 − ∫ 𝑒−𝑖𝜔0𝜏0𝜃
0

−1

 𝑑 ≮ (𝜃))�̅�(0) = 0 

We have 
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(2𝑖𝜔0𝜏0𝐼 − ∫ 𝑒2𝑖𝜔0𝜏0𝜃𝑑 ≮ (𝜃))𝑃1 = 𝐺𝑚2

0

−1

 

Similarly, we have 

−(∫ 𝑑 ≮
0

−1

(𝜃))𝑃2 = 𝐺𝑚�̅� 

Hence, we obtain 

[

2𝑖𝜔0 + 𝑎1𝑃𝑟1
∗ −𝑃𝑟1

∗ 𝑃𝑟3
∗ 𝑃𝑟1

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗

−𝑃𝑟3𝑃𝑟2
∗ 2𝑖𝜔0 + 𝑏1𝑃𝑟2

∗ 𝑃𝑟2
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗

−𝑑1𝑃𝑟3
∗ 𝑒−2𝑖𝜔0𝜏0 −𝑒1𝑃𝑟3

∗ 𝑒−2𝑖𝜔0𝜏0 2𝑖𝜔0 + 𝑐1𝑃𝑟3
∗

] 𝑃1 = 

−2 [

𝑎1 + (1 − 𝑃𝑟2
∗ )𝑦1 − 𝑥1(𝑃𝑟1

∗ 𝑦1 + 𝑃𝑟3
∗ )

𝑏1𝑥1
2 + (1 − 𝑃𝑟1

∗ )𝑥1𝑦1) − 𝑥1𝑃𝑟3
∗ − 𝑦1𝑃𝑟2

∗

𝑦1(𝑐1𝑦1 − 𝑑1𝑒
−𝑖𝜔0𝜏0 − 𝑒1𝑥1𝑒

−𝑖𝜔0𝜏0)

] 

and 

[

𝑎1𝑃𝑟1
∗ −𝑃𝑟1

∗ 𝑃𝑟3
∗ −𝑃𝑟2

∗ 𝑃𝑟1
∗ + 𝑃𝑟1

∗

−𝑃𝑟2
∗ 𝑃𝑟3 𝑏1𝑃𝑟2

∗ −𝑃𝑟2
∗ 𝑃𝑟1

∗ + 𝑃𝑟2
∗

−𝑑1𝑃𝑟3
∗ −𝑒1𝑃𝑟3

∗ 𝑐1𝑃𝑟3
∗

]𝑃2 

= −2 [

𝑎1 + (1 − 𝑃𝑟2
∗ )𝑅𝑒{𝑦1} − 𝑃𝑟1

∗ 𝑅𝑒{�̅�1𝑥1} − 𝑃𝑟3
∗ 𝑅𝑒{𝑥1}

𝑥1�̅�1𝑏1 + (1 − 𝑃𝑟1
∗ )𝑅𝑒{𝑥1�̅�1} − 𝑃𝑟2

∗ 𝑅𝑒{�̅�1} − 𝑃𝑟3
∗ 𝑅𝑒{𝑥1})

𝑐1𝑦1�̅�1 − 𝑑1𝑅𝑒{𝑦1} − 𝑒1𝑅𝑒{𝑦1�̅�1}𝑒
𝑖𝜔0𝜏0)

] 

Then, 𝑠21can be denoted by the variables. 
We determined that 𝑠𝑖𝑗can be calculated using the variables. Thus, we computed these quantities as follows:  

𝑍2(0) =  
𝑖

2𝜔0𝜏0
(𝑠11𝑠20 − 2|𝑠11|

2 −
|𝑠02|

2

3
) +

𝑠21
2
                               (32) 

𝜎2 = −
𝑅𝑒{𝑍2(0)}

𝑅𝑒{𝜆′(𝜏0)}
                                                                    (33) 

𝛽2 = 2𝑅𝑒{𝑍2(0)} 

𝑇2 =  −
𝐼𝑚{𝑍2(0)} + 𝜎2𝐼𝑚{𝜆

′(𝑍0)}

𝜏0𝜔0
                                                    (34) 

Theorem. 𝜎2 calculates the direction of the Hopf bifurcation: if 𝜎2 <0(𝜎2 > 0), we obtain the supercritical Hopf bifurcation. When  𝜏 >
 𝜏0 (𝜏 < 𝜏0), we observed the bifurcating period solutions. 𝑃2 indicates that the bifurcating periodic solution is stable. If 𝛽2 < 0 (𝛽2 > 0), 
we observe that bifurcating periodic solutions are arbitrary and asymptotically stable (unstable).  The bifurcating periodic solution is 
determined by 𝑇2. When 𝑇2> 0 (𝑇2 < 0), the period increases (decreases), respectively .  
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4. Numerical Example 

 
In this part, we used MATLAB to perform a numerical simulation of the system (Poole, 1974; Abrams et al., 1993). We use these parametric 
values: 

Set 1 
 

(a1 = 1.2; b1 = 1.4; c1 = 1; d1= 1; e1 = 2) 
 
We can observe the positive interior equilibrium point when the initial value is 0.2, 0.4, or 0.6. 
 

Figure 1. In the absence of delay, the system is stable  
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Figure 2. Asymptotically stable when τ = 1.5 < τ0 = 1.7387 

 

Figure 2.1 Phase plane graph for asymptotically stable when τ = 1.5 < τ0 = 1.7387 
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Figure 3. Hopf Bifurcation when τ = 1.85 > τ0 = 1.7387 

       

Figure 3.1 Phase plane graph for Hopf Bifurcation when τ = 1.85 > τ0 = 1.7387 
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 Set 2 (a1 = 1; b1 = 1.44; c1 = 1; d1= 1; e1 =1.2) 
The positive interior equilibrium point is obtained when the initial value is 0.2, 0.4, and 0.6. 
 

 
Figure 4. In the absence of delay, the system is stable 

 
 
 

 

Figure 4.1 Phase plane graph in the absence of delay in the system 
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Figure 4.2 Phase plane graph in the absence of delay in the system 

 

Figure 5. Asymptotically stable when τ < τ0 = 1.7387 
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  Figure 5.1 Phase plane graph for asymptotically stable when τ < τ0 = 1.7387 

 

Figure 6. Hopf Bifurcation when τ = 2.5 > τ0 = 1.7387 
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Figure 6.1 Phase plane graph for Hopf bifurcation when τ = 2.5 > τ0 = 1.7387 

 

5. Conclusion 
 

 Certain species, such as zebras and gazelles, form 
teams because it reduces the predation risk. Time delay caused 
by the age structure, maturation period, and feeding time is a 
major factor in real-time prey–predator dynamic that results in 
periodic solutions and the bifurcation phenomenon. This study 
investigated the impact of lag time on a multiteam prey–
predator dynamic by examining two prey and one predator and 
considering that the two prey populations support each other 
when they are susceptible to predation. The insertion of a time 
delay destabilizes the system’s stable equilibrium point. For set 
1, the system is absolutely stable in the absence of delay (i.e, 
𝜏 = 0; Figure 1). The same finding is analytically supported by 
Ruth–Hurwitz’s criteria. The system is asymptotically stable 
when the value of delay is less than the critical value (i.e., 𝜏 <
1.7387; Figures 2 and 2.1). The Hopf bifurcation is observed 
when the delay parameter passes a critical value (i.e., 𝜏 ≥
1.7387; Figures 3 and 3.1). For set 2, the system is absolutely 
stable in the absence of delay (i.e., 𝜏 = 0; Figures 4, 4.1, and 
4.2). The same finding is analytically supported by Ruth–
Hurwitz’s criteria. The system is asymptotically stable when the 
value of delay is less than the critical value (i.e., 𝜏 < 1.7387; 
Figures 5 and 5.1). The Hopf bifurcation is observed when the 
delay parameter passes a critical value (i.e., 𝜏 ≥ 1.7387; Figures 
6 and 6.1). These graphs have their basics covered in lemmas 1 
and 2.  Furthermore, the technique used to determine the 
direction and stability of a Hopf bifurcation solution is 
constructed using normal form theory and the centre manifold 
reduction hypothesis. Numerical results are substantiated using 
the dde23 code of MATLAB 
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