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Abstract: Inventory has an impact on the manufacturing process as well as supply chain operations. The fundamental goal of this research 
paper is to optimize the cost associated with inventories and to provide flow less continuous production process in time. Normally, 
demand rate of any entity in inventory control model are treated as predictable and at the same time constant too, and that the cost 
associated to unit inventory must be independent and non-variable in nature. Nevertheless, in practical circumstances, the unit price and 
demand rate of an entity may be interconnected. When the asking for an article is enormous, an entity is manufactured in huge quantities 
and the static charges of manufacturing being diffused over a multiple component. Henceforth, per unit article cost decreases significantly. 
i.e., per unit article cot and the demand of an article are related under inverse variation. So, better to consider the demand rate of an 
article as a variable constraint than to fixed one. In this research article, a mathematical model for multiple articles through permitted 
and restricted shortage and per article cost based on demand accompanied by upper and lower limits viz restricted storage space and 
manufacturing expenses has been constructed. Overall, investigating the simultaneous effect of storage space and manufacturing 
expenses in an inventory model provides valuable insights that enable cost optimization, resource allocation, capacity planning, and risk 
mitigation. It helps companies make informed decisions and improve their overall operational efficiency and profitability. The Multi-Entity 
Stock Dependent Model with Capacity and Manufacture Cost Restraints can be customized and used in a variety of sectors that include 
managing inventory across numerous entities and complicated supply chain networks. Here are a few examples of industries that can 
benefit from such a model: manufacturing industry, the retail and distributor sector, e-commerce companies, pharmaceutical and 
healthcare industry, automotive industry and food and beverage industry. The article cost is explored at this juncture in a fuzzy 
atmosphere and solutions of the model being obtained through KKT condition. Finally, a conclusion is offered in the final portion. 
 

Keywords: Integrated inventory model, restricted shortages, KKT, fuzzification, variable constraint. 
 
1. Introduction 

 

The economic order quantity model has an essential and key 

functioning in the field of inventory. When applying the EOQ 

model to particular practical scenarios encountered in real life, it 

is difficult to precisely estimate the cost associated with the 

various terminology of inventory viz, setup, carrying, shortage, 

demand etc. Only approximate values may be found. Mostly, the 

situation which are unpredictable and not certain are studied 

under the influence of stochastic inventory theory.  
Inventory control is a crucial area for both real-world 

applications and research reasons. The most often used inventory 

model is the Economic Order Quantity model, in which the 

sequential operations are classed as supply and demand. The first 

quantitative treatment of inventory was the basic EOQ model. 

This model was created by Harris (1915) later, Hadley & Whitin 

(1963) analysed several inventory methods.Abu Hashan Md 

Mashudand et al. (2021), Mishra U et al. (21), 1Rahman et al. 

(2022), 2Rahman et al. (2022) studies the two warehouse 

inventory problems to get rid of stockout situation but renting or 

owning two warehouse increases the investment and overall 

profitability of the entire model decreases. Miah et al. (2021) 

developed limited time price discount inventory model but 

restricted this model for the electronic products only. This model 

could be more generalize to cover more industries.1Roy D et al. 

(2022), 2Roy D et al. (2022) studies the inventory models with 

preservation technology and cap-and-trade policy. Sultana et al. 

(2022) described the role of the discount policy and its impact on 

the inventory control model. They extended the earlier work of 

Shaikh A. A. et al. (2017, 2020) in which author considered fully 

backlogged inventory model and application of preservation 

facility with ramp type demand. Md. Alamin Khan et al. (2017) 

proposed the solution of nonlinear system of equation that could 

be raised during the development of mathematical formulation of 

inventory model.  
The fundamental goal of this mathematical model is to optimize 

the cost associated with inventories and to provide flow less 

continuous production process in time. Normally, demand rate of 

any entity in inventory control model are treated as predictable 

and at the same time constant too, and that the cost associated 

to unit inventory must be independent and non-variable in 

nature. Nevertheless, in practical circumstances, the unit price 

and demand rate of an entity may be interconnected. When the 

asking for an article is enormous, an entity is manufactured in 
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huge quantities and the static charges of manufacturing being 

diffused over a multiple component. Henceforth, per unit article 

cost decreases significantly. i.e., per unit article cot and the 

demand of an article are related under inverse variation. So, 

better to consider the demand rate of an article as a variable 

constraint than to fixed one. 

In this chapter, a mathematical model for multiple articles 

through permitted and restricted shortage and per article cost 

based on demand accompanied by upper and lower limits viz 

restricted storage space and manufacturing expenses has been 

constructed. The article cost is explored at this juncture in a fuzzy 

atmosphere and solutions of the model being obtained through 

KKT condition. Finally, a conclusion is offered in the final portion. 

 

2. K-K-T Conditions   
 

Taha (2007) presented how to achieve the optimum solution of 

a nonlinear programming issue associated to inequality 

restrictions by applying the Kuhn-Tucker criteria. The construction 

of the Kuhn-Tucker conditions is based on the Lagrangean 

approach. Assume that the issue is stated by  

Minimize y = f(𝑥) …… . .1 

Associated to ℎσ(x) ≥ 0, σ = {x: x ∈ N}. …… . .2 

 

The non-negative restrictions 𝑥 ≥ 0, if any, are included into the 

limitations of a natural numbers. The inequality restrictions can 

be imposed to the equations by implementing non-negative slack 

variables. Suppose 𝑠𝜎
2 the amount of slack eliminated from the 

𝜎𝑡ℎ constraint ℎσ(𝑥) ≥ 0. 

 

Let ε = (ε1, ε2, …… , εn), …… . .4 

h(x) = (g1(x), g2(x), … , gn(x)) …… . .5 

and s2 = (s1
2, s2

2, …… , sn
2) …… . .6 

 

Then the Lagrangean functions are given by 

 

𝐻(x, s, ε) = f(𝑥) − ε[ℎ(x) − s2] …… . .7 

 

Considering the fractional differentiation of H associated to 

x, s, and ε criteria that are also sufficient if the objective function 

and solution domain meet the following limitations: 

 

Sense of optimization Prerequisite conditions 

Objective function Solution space 

Maximization Concave Convex Set 

Minimization Convex Convex Set 

 

The following is a summary of the requirements for determining 

if the Kuhn-Tucker conditions are satisfied: 

Problem Kuhn-Tucker conditions  

1. Max z =

f(x)associated to 

𝑘σ(𝑥) ≤ 0, x ≥

0, σ = 1, 2, …n 

∂

∂xj
f(𝑥) −∑εσ

n

σ=1

∂

∂xj
𝑘σ(𝑥) = 0 

…… . .8 

 

εσ𝑘
σ(𝑥) = 0, 𝑘σ(𝑥) ≤ 0, σ

= 1,2, … . n 

…… . .9 

εσ ≥ 0, σ = 1,2,……n …… . .10 

2. Max z =

f(x)associated to 

𝑘σ(𝑥) ≥ 0, x ≥

0, σ = 1, 2, …n 

∂

∂xj
f(𝑥) −∑εσ

n

σ=1

∂

∂xj
𝑘σ(𝑥) = 0 

…… . .11 

 

εσ𝑘
σ(𝑥) = 0, 𝑘σ(𝑥) ≥ 0, σ

= 1,2, … . n 

…… . .12 

εσ ≥ 0, σ = 1,2,……n …… . .13 

Karush was one who firstly introduced and developed the K-K-T 

conditions in 1939. 

 

3. Formulation and Evaluation of The Model  
Let the stock volume of σth entity (σ ∈ N) be Rσ for instance 

t =  0. In specified range (0, Tσ (=  t1σ + t2σ )), demand being 

fulfilled by systematic declination of stock level. This technique 

results in the inventory level being 0 at the time t1σ then the 

range is allowed to experience shortages in the domain (t1σ , Tσ). 

Figure 3.1 interpret a mathematical model with stock backorder. 

Rσ is the maximum inventory quantity and Q is the order quantity 

for one period? Also, t1σ indicates the time needed for the Rσ 

entities to be required. The length of time during one period over 

whichbackorder will be incurred will be given byFigure-1. 
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Figure -1 Stock level of the 𝜎𝑡ℎ entity 

 

Let qσ(t) be the on-hand inventory at time t (0 ≤ t ≤  T). In this 

model, uniform replenishment rate starts with inventory level qσ. 

The inventory level decreases with demand. Ultimately the 

inventory reaches 0 at the end of the cycle time t1σ. 

The derivative function describing inventory level qσ(t) of σth 

entity in the range 0 ≤  t ≤  Tσ is given by 

dqσ(t)

dt
= {

−Dσ, for 0 ≤ t ≤ t1σ
−Dσ, for t1σ ≤ t ≤ Tσ

 
…… . .14 

With the conditions qσ(0) = Rσ(= Qσ −Mσ), qσ(Tσ) = −Mσ 

and qσ(t1σ) = 0      …… . .15 

On every interval a certain quantity of shortfall is permitted and 

there is a penalty cost 𝑚1 per entity of unmet demand per unit 

time. 

For0 ≤ t ≤ t1σ …… . .16 

∫ dqσ(t)
t

0

= − ∫ Dσ

t

0

dt 
…… . .17 

qσ(t) − qσ(0) = −Dσt …… . .18 

Hence, qσ(t) = Rσ − Dσ(t) …… . .19 

For t1σ ≤ t ≤ Tσ …… . .20 

∫ dqσ(t)
t

t1σ

= − ∫ Dσ

t

t1σ

dt 
…… . .21 

qσ(t) − qσ(t1σ) = −Dσ(t − t1σ) …… . .22 

Hence, qσ(t) = Dσ(t1σ − t) …… . .23 

Thus qσ(t) = Rσ − Dσ(t), for 0 ≤ t ≤ t1σ …… . .24 

Dσ(t1σ − t) for t1σ ≤ t ≤ Tσ …… . .25 

Also Dσt1σ = Rσ …… . .26 

Mσ = Dσt2σ …… . .27 

Qσ = DσTσ …… . .28 

The holding cost is related to the cost of carrying (or holding) 

inventory. This cost frequently encompasses the expenditures 

such as rent for space, usage for storage, interest on the money 

locked-up, insurance of stored equipment, manufacturing, taxes, 

depreciation of equipment and furnishings utilised, etc. 

This is derived by evaluating the integral in the range 

(0, t1σ) 

…… . .29 

Holding cost = Hσ ∫ qσ(t)dt
t1σ
0

 …… . .30 

=
Hσ(Qσ −Mσ)

2

2Dσ
 

…… . .31 

=
HσTσ(Qσ −Mσ)

2

2Qσ
 

…… . .32 

Since,  Qσ = DσTσ …… . .33 

The penalty cost for running out of stock (i.e., when an entity 

cannot be provided on the customer's demand) is known as the 

shortfall cost. This cost encompasses the loss of projected profit 

via sales of items and loss of goodwill in terms of permanent loss 

of customers, and it is tied to lost earnings in future sales. Thus, 

the shortfall cost is calculated by evaluating the integral in the 

range (𝑡1𝜎 , 𝑇𝜎). This is because the shortage develops only after 

all the present stockpiles are consumed. Hence, 

Shortage cost= nσ ∫ −qσ(t)
Tσ
t1σ

dt …… . .34 

= −nσ [{Tσqσ(Tσ) − t1σqσ(t1σ)} − ∫ t(−Dσ)

Tσ

t1σ

dt] 

…… . .35 

Since, dqσ(t) = −Dσ dt for t1σ ≤ t ≤ Tσ …… . .36 

The shortage cost becomes,  

 Shortage cost = nσ [{Tσ(−Mσ) − 0} + Dσ ∫ t
Tσ
t1σ

dt] …… . .37 

= nσTσMσ −
nσDσ
2

[Tσ
2 − t1σ

2 ] 
…… . .38 

But 𝑇𝜎 =
𝑄𝜎

𝐷𝜎
  

t1σ =
Rσ

Dσ
=

(Qσ−Mσ)

Dσ
 and Qσ = Rσ +Mσ …… . .39 

= nσMσTσ =
nσDσ
2

[
Qσ
2

Dσ
2 −

Rσ
2

Dσ
2] 

…… . .40 

-------------------------------------------------

- ----

--    
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- 

----

----

----

-    

----
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----

----

----

-- 

𝑄𝑖 

𝑅𝑖 

𝑡 𝑂 

𝑞𝑖(𝑡) 

𝐷𝑖  

𝑡1𝑖 𝑡2𝑖 

𝑇𝑖 
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40 
 

Regular Issue Malaysian Journal of Science 

DOI: https//doi.org/10.22452/mjs.vol43no3.5 

Malaysian Journal of Science 43(3): 37-48 (September 2024) 

= nσMσTσ −
nσ
2Dσ

[{Rσ +Mσ}
2 − Rσ

2 ] …… . .41 

=
nσMσ

2

2Dσ
 

…… . .42 

=
nσMσ

2Tσ
2Qσ

 
…… . .43 

Since, 𝐷𝜎 =
𝑄𝜎

𝑇𝜎
 

The cost of manufacturing each component of the system is 

provided by 

Production cost = PσQσ 

Additionally, each entity's setup price is provided by 

Setup cost = Sσ 

The total cost is defined as the sum of production cost, setup 

cost, holding cost and shortage cost. 

TC = pσQσ + Sσ +
HσTσ(Qσ−Mσ)

2

2Qσ
+
nσMσ

2Tσ

2Qσ
, for σ =

1, 2, … , n. 

…… . .44 

The overall average cost of the 𝜎𝑡ℎ entity of the system is then 

given by 

TC (pσ, Qσ, Mσ) = pσDσ +
SσDσ
Qσ

+
Hσ(Qσ −Mσ)

2

2Qσ
+
nσMσ

2

2Qσ
 

…… . .45 

The unit price of an entity is often thought of as being constant 

and independent in nature, and the classical inventory concerns 

are formed by taking these assumptions into account. By making 

the assumption that the demand rate and unit price are constants 

and independent of one another, Silver & Peterson (1985) 

developed an inventory model. However, in real-world situations, 

a company's unit price and demand rate may be connected. When 

there is a high demand for something, it is produced in vast 

quantities and the fixed production costs are spread among a lot 

of different goods. As a result, the entity's unit cost declines, 

making its unit price inversely linked to its demand. This strategy 

was used by Jung & Klein (2001) to propose and resolve the 

Economic Order Quantity problem. The inventory model with 

demand-dependent unit pricing is solved in the current study by 

utilising the Karush Kuhn-Tucker method. 

 

4. Assumptions of the Inventory Model 
Under the following presumptions, a multi-entity stock non-
restricted shortage model has been developed. 
Instant replenishment is available. 
No lead time exists. 

Demand is correlated with unit price aspσ = Aσ
β
Dσ
−β

 
where Aσ (>  0) and β (β > 1) being non-variable, non-
imaginary numbers chosen to provide the best fit of the 
estimated price function Aσ >  0 is a necessary constraint as 
individually Dσ and Pσ need to positive. 
 

5. Objective Function of the Model 
The objectives of the issue are as follows: 
According to the objective of modelling, the total cost of 
materials must minimise in the system which comprises three 
parts with shortage cost. 
The annual total cost rendering to the fundamental valuation of 
the mathematical model for economic order quantity is: 

Overall cost = manufacture cost + setup cost + holding cost + 
shortage cost 

TC (pσ, Qσ, Mσ) = pσDσ +
SσDσ
Qσ

+
Hσ(Qσ −Mσ)

2

2Qσ
+
nσMσ

2

2Qσ
 

…… . .46 

Substituting for 𝑝𝜎 gives 

TC (Dσ, Qσ, Mσ) = Aσ
β
Dσ
1−β

+
SσDσ
Qσ

+
Hσ(Qσ −Mσ)

2

2Qσ
+
nσMσ

2

2Qσ
 

for σ = 1,2,3, . . … n 

…… . .47 

The inventory model's primary goal is to reduce the overall cost 
specified by 
Min TC (Dσ, Qσ, Mσ)

= ∑ [Aσ
β
Dσ
1−β

+
SσDσ
Qσ

n

σ=1

+
Hσ(Qσ −Mσ)

2

2Qσ
+
nσMσ

2

2Qσ
] 

…… . .48 

 
6. Constraints of the Model 
The following limitations have been put on the proposed model: 
In order to achieve the ideal overall cost, it is necessary to take 
into account a variety of resource limitations. The amount of 
warehouse floor space that can be used to store the items is 
limited. 
 
i. e;  ∑ wσ

n
σ=1 Qσ ≤ W …… . .49 

 
The amount that can be invested in overall production costs is 
finite and may have a maximum investment level. 
 
i. e;  ∑ pσ

n
σ=1 Qσ ≤ B …… . .50 

⟹ i. e; ∑ Aσ
β

n

σ=1

Dσ
−β
Qσ ≤ B 

…… . .51 

 

7. Uncertain Stock Model 
When 𝑝𝜎′𝑠 are uncertain decision constraints, the above crisp 
formulation underneath uncertain situation reduces to 

Min TC (pσ, Dσ, Qσ, Mσ)

= ∑ [Aσ
β
Dσ
1−β

+
SσDσ
Qσ

n

σ=1

+
Hσ(Qσ −Mσ)

2

2Qσ
+
nσMσ

2

2Qσ
] 

…… . .52 

associated to the limitations 

∑wσQσ ≤ W

n

σ=1

 
…… . .53 

∑Aσ
β
Dσ
−β
Qσ ≤ B

n

σ=1

 
…… . .54 

Where 𝑝�̃� = 𝐴𝜎
𝛽
𝐷𝜎
−𝛽

 and 𝑝�̃� represents fuzzification of the 
parameters. 
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8. Karush Kuhn-Tucker Conditions f2or 
Solving the Stock Model 
The impartial function of a stock model is 
Mσn TC (Dσ, Qσ, Mσ)

= ∑ [Aσ
β
Dσ
1−β

+
SσDσ
Qσ

n

σ=1

+
Hσ(Qσ −Mσ)

2

2Qσ
+
nσMσ

2

2Qσ
] 

…… . .55 

associated to the constraints 

∑wσQσ ≤ W

n

σ=1

 
…… . .56 

∑Aσ
β
Dσ
−β
Qσ ≤ B

n

σ=1

 
…… . .57 

 
Here the decision constraints are the demand 𝐷σ, lot size 𝑄 and 
the shortage level𝑀1. The problem is, to solve the above 
inventory model with these decision variables associated to the 
inequality constraints (3.3) and (3.4) in order to minimize the 
overall cost function. The problem is solved for a unit entity. 
For a single entity the objective function and the constraints can 
be written as follows. 
 

Min TC (D, Q,M) = ∑ [AβD1−β +
SD

Q

n

σ=1

+
H(Q − M)2

2Q
+
nM2

2Q
] 

…… . .58 

associated to the inequality constraints 
wQ ≤ W …… . .59 

AβD−βQ ≤ B …… . .60 

To minimize the objective function, the Lagrangean function has 
been constructed by introducing the variables 𝑠1and 𝑠2 as 
follows: 
 

9. Relationship Function 
The relationship function for the vague variable 𝑃𝜎 is defined as 
follows 

μpσ(X) =

{
 
 

 
 

1, pσ ≤ LLσ
ULσ − pσ

ULσ − LLσ
, LLσ ≤ pσ ≤ ULσ

0, pσ ≥ ULσ

 

…… . .61 

Here 𝑈𝐿 and 𝐿𝐿 are superior bound and inferior bound of 𝑃𝜎 
correspondingly. 
 

10. Numerical Example 

To illustrate the suggested mathematical model for stock with 
and without shortage instances, the following input data are 
examined in correct units for a single entity. A numerical 
example has been constructed for a single entity with the set of 
input parametric values given in Table-l. 

 
Table-1 The input values of parameters in the mathematical 

model 

Parameter Notation 
Value (in 
rupees) 

Number of entities 𝑛 1 

Constant 𝐴1 20 

Setup cost of the entity 1 𝑆1 80 

Holding cost of the entity 1 𝐻1 0.7 

Storage space for the entity 1 𝑤1 3sq.ft. 

Storage space available 𝑊 280sq.ft. 

Total investment cost 𝐵 40 

Shortage cost per unit entity 𝑛1 10 

Lower limit of the component cost 
of the entity 1 

𝐿𝐿1 1 

Upper limit of the component cost 
of the entity 1 

𝑈𝐿1 2 

 
For the above data, the objective function becomes 
 
𝐺 = 20𝛽𝐷1−𝛽 + 80𝐷𝑄−1 + 0.35(𝑄 −𝑀)2𝑄−1 + 5𝑀2𝑄−1

− 𝜀1(280 − 3𝑄 − 𝑠1
2) − 𝜀2(40

− 20𝛽𝐷−𝛽𝑄 − 𝑠2
2) 

 

…… . .62 

𝐺 = 20𝛽𝐷1−𝛽 + 80𝐷𝑄−1 + 0.35𝑄 − 0.7𝑀 + 5.35𝑀2𝑄−1

− 𝜀1(280 − 3𝑄 − 𝑠1
2) − 𝜀2(40

− 20𝛽𝐷−𝛽𝑄 − 𝑠2
2) 

 

…… . .63 
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Differentiating (63) partially with respect to D, Q and M 
respectively we get 
 
By the Kuhn-Tucker conditions 
∂G

∂D
= 0 ⇒ (1 − β)20βD−β + 80Q−1 − βε220

βD−β−1Q = 0 
…… . .67 

∂G

∂Q
= 0 ⇒ 80DQ−2 + 0.35 − 5.35 Q−2M2 + 3ε1 + ε220

βD−β

= 0 

…… . .68 

∂G

∂M
= −0.7 + 10.7Q−1M = 0 

…… . .69 

 
Hence, an optimal solution has been obtained by solving the 
Equations (6), (7) & (8) by implementing K-K-T conditions with 
demand 𝐷, portion size 𝑄 and the deficiency level 𝑀 as the 
decision constraints by varying the parametric value 𝛽. Also, an 
optimum solution has been obtained by fuzzifying the unit cost 
and the results are discussed in Table 2. 
 
The value of the parameter 𝛽 has been chosen between 2 and 3. 
The most suitable values are obtained for the parametric values 
𝛽 such as 2.4, 2.5, 2.6 and 2.8 by trial-and-error method that 
minimizes the objective function. 
A sensitivity analysis for optimum solution with shortages 
corresponding to the parameter 𝛽 is given in Table 2. 

 
Table-2 Optimal results for the model with shortages 

β P1 μpσvalue D1 Q1 M1 Expected 
Total 
cost 

2.4 1.2853 0.7147 18.014 62.092 4.061 55.151 
2.5 1.3053 0.6947 17.978 62.899 4.114 54.872 
2.6 1.3278 0.6722 17.934 63.627 4.161 54.633 
2.8 1.3806 0.6194 17.824 64.834 4.240 54.197 

In Table 2, a study of expected total cost with demand and lot 
size including shortages is given for different values of β. We can 

conclude that when demand decreases, lot size increases but 
the annual total cost decreases. 

From the above table it follows that  1.2853 has the extreme 
relationship value 0.7147. Henceforth the enforced optimal 
resolution is Q1 = 62.092, D1 =  18.014, M1 = 4.061 and 
Minimum expected total cost 55.151. 
 

11. Sensitivity Analysis 
Sensitivity examination is investigated to check in what way the 
productivity of the mathematical model is influenced by 
modifications or errors in its input parameters based on the 
numerical example. The outcomes are demonstrated through the 
assistance of numerical example. A model with and without 
shortage is discussed in this chapter. 
One of the most fundamental inventory models is the stochastic 
model. The model is significant because it continues to be one of 
the most widely used inventory models in the sector and acts as 
a foundation for more sophisticated inventory models. 
The values of ambiguous variables needed for decision-making 
are obtained by solving the inventory model using the Kuhn-
Tucker condition technique. The maximum membership function 
value of 0.7147 corresponds to the best values of the choice 
variables and the overall cost. Hence the optimal solution is Q1 =
62.092, D1 = 18.014, M1 = 4.061 and TC =  55.151.Results 
due to different values of β for the model has been calculated and 
depicted in the following Figures 2, 3, 4, 5 and 6. 

 

 
The above Figure 2 shows that as the value of the parameter 𝛽 increases from 2.4 to 2.8, the value of the demand decreases from 18.014 

to 17.824. 
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Figure 2 Effect of change in demand level with respect to 𝛽

∂G

∂D
= (1 − β)20βD−β + 80Q−1 − βε220

βD−β−1Q 
…… . .64 

∂G

∂Q
= 80DQ−2 + 0.35 − 5.35 Q−2M2 + 3ε1 + ε220

βD−β 
…… . .65 

∂G

∂M
= −0.7 + 10.7Q−1M 

…… . .66 
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The above Figure 3 shows that as the value of the parameter 𝛽 increases from 2.4 to 2.8, the value of the unit price increases from 1.2853 
to 0.1.3806. 

 

 

The above Figure 4 shows that as the value of the parameter 𝛽 increases from 2.4 to 2.8, the value of the lot size increases from 62.092 to 
64.834. 
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The above Figure 5 shows that as the value of the parameter 𝛽 increases from 2.4 to 2.8, the value of the shortage level increases from 
4.061 to 4.240. 

 

The above Figure 6 shows that as the value of the parameter 𝛽 increases from 2.4 to 2.8, the value of the annual total cost decreases from 
55.151 to 54.197. 

 

12. Inventory Model Without Shortages as a 
Singular Instance 
It is possible to get the scenario without a shortage by inserting 
in the preceding model. The only variables that affect the total 
cost function in this scenario are demand and lot size. An 
inventory model without shortages can be reduced to 

Mσn TC (Dσ, Qσ) = ∑ [Aσ
β
Dσ
1−β

n

σ=1

+
SσDσ
Qσ

+
HσQσ
2

] 

…… . .70 

associated to the constraints 

∑wσQσ ≤ W

n

σ=1

  …… . .71 

∑Aσ
β
Dσ
−β
Qσ ≤ B

n

σ=1

   …… . .72 

For a single entity the inventory model can be stated as 

MσnTC (D, Q) = A
βD1−β +

SD

Q

+
HQ

2
 

…… . .73 

associated to the constraints 
wQ ≤ W and …… . .74 

AβD−βQ ≤ B …… . .75 

The Lagrangean function corresponding to this objective 
function can be written as 

G = AβD1−β + SDQ−1 + 0.5HQ − ε1(W −wQ − s1
2)

− ε2(B − A
βD−βQ − s2

2) 

…… . .76 

Differentiating the above functionpartially with respect to 𝐷 and 
𝑄 gives the following derivatives. 
∂G

∂D
− (1 − β)AβD−β + SQ−1 − ε2βA

βD−β−1Q 
…… . .77 

By Karush Kuhn-Tucker conditions 
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Figure 5 Effect of change in shortage level with respect to 𝛽
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∂G

∂D
= 0 ⟹ (1 − β)AβD−β + SQ−1 − ε2βA

βD−β−1Q

= 0 

…… . .78 

∂G

∂D
= 0 ⟹ −SDQ−2 + 0.5H + ε1w+ ε2A

βD−β = 0 
…… . .79 

Solving the Equations (14) and (15) gives the required optimum 
solution. Ideal resolution in deprived of shortages is assumed in 
the subsequent 
Table 3 for the same set of input values given in Table l. 

 

 
Table 3 Optimal values for various values of for no-shortage case 

β p1 
μp1 

value 
D1 Q1 

Expected 
Total cost 

2.4 1.3405 0.6595 17.701 59.538 56.519 

2.5 1.3624 0.6376 17.673 60.268 56.282 

2.6 1.3857 0.6143 17.642 60.967 56.059 

2.8 1.4407 0.5593 17.555 62.223 55.649 

 
In this case, it follows that the minimum annual total cost corresponds to the determined relationship function value is 0.6595. Hence the 
optimal result satisfying the constraints are 𝐷1 = 17.701, 𝑄1  =  59.538 and the minimum total cost is equal to 56.519. The graphical 
representations are shown in the Figure 7, 8,9 and 10. 

 

 
The above Figure 7 shows that as the value of the parameter 𝛽increases from 2.4 to 2.8, the value of the demand decreases from 17.701 

to 17.555. 
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The above Figure 8 shows that as the value of the parameter 𝛽 increases from 2.4 to 2.8, the value of the lot size increases from 59.538 to 
62.223. 

 

 
The above Figure 9 shows that as the value of the parameter 𝛽 increases from 2.4 to 2.8, the value of the unit price increases from 1.3405 

to 1.4407. 
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Figure 10 Effect of change in annual total cost with respect to 𝛽 

The above Figure 10 shows that as the value of the parameter 𝛽 increases from 2.4 to 2.8, the value of the total cost decreases from 
56.519 to 55.649. 

 

13. Summary 
In this research article, a mathematical model for multiple 

articles through permitted and restricted shortage and per article 

cost based on demand accompanied by upper and lower limits viz 

restricted storage space and manufacturing expenses has been 

constructed. The article cost is explored at this juncture in a fuzzy 

atmosphere and solutions of the model being obtained through 

KKT condition. A comparison study of the findings for with 

shortage case(Table-2) and without shortage case(Table-3) is 

done. In the numerical examples(Table-1), it is found that the 

optimum total cost in the shortage scenario is less than that of the 

without shortage case. 

The purpose behind developing this model is to provide several 

managerial insights and constructive conclusion such as: the 

model aids managers in deciding how best to distribute resources 

among various supply chain organizations.To maximise overall 

performance, managers may take well-informed decisions on 

production schedules, capacity utilisation, and cost-cutting 

strategies. Managers may minimise stockouts, assure product 

availability, and optimise inventory levels while taking capacity 

constraints and production costs into account.It offers 

information on how adjustments to production procedures, 

capacity use, and inventory allocation might result in cost 

reductions.It assists managers in determining the impact of 

variable demand, capacity constraints, or cost variations on 

inventory management. Organizations may use this information 

to establish risk-mitigation measures such as safety stock 

management, contingency planning, and alternate sourcing 

choices.The model serves as a framework for assessing and 

improving supply chain performance. Managers may identify 

areas for improvement and apply specific initiatives to increase 

overall performance by analysing key performance metrics such 

as inventory turnover, order fulfilment rates, and manufacturing 

cost ratios 

Ultimately, it helps businesses to make efficient decisions about 

inventory management, resource allocation, and cost reduction. 

Managers may boost efficiency, cut costs, enhance customer 

happiness, and establish a competitive edge in their respective 

sectors by recognising the interdependencies between storage 

space, production expenditures, and other restrictions. 

One of the possible extensions of this chapter is to establish 

particular conditions that guarantee the global optimality of 

solutions. It is also conceivable to consider the life cycle to be a 

stochastic function. When this model would cover the time value 

of money and inflation, a better reflection of real-life scenarios 

could be presented. 
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