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Abstract: The non-dyadic Haar wavelet (Haar scale-3) collocation approach is used in this article to generate numerical solutions for 
fractional differential equations. The non-linear fractional ordinary differential equations are linearised using the Quasilinearisation 
technique. The Haar scale-3 wavelet approach works by transforming a set of differential calculations into a set of linear algebraic 
equations. The reliability of the numerical solution can be improved by raising the degree of resolution, and error analysis can be 
performed. The numerical examples were solved to test the simplicity and flexibility of the method. The outcomes of the numerical 
examples are compatible with the exact solution and provide better results than previous results existing in the literature. This means 
that the procedure used here is consistent, reliable, and convenient to use. 
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1. Introduction 

 

In recent years, the usage of fractional-order derivatives has 

exploded in engineering and biological sciences, as well as other 

fields of study. Modelling and controlling numerous dynamic 

systems is one of the biggest advantages of using fractional 

differential equations. Fractional derivatives and integrals are 

more useful and cost-effective than conventional derivatives in 

formulating specific electrochemical applications (Oldham & 

Spanier, 1974). This discovery stimulated their curiosity not only 

in the applications of the concepts of arbitrary order integrals and 

derivatives but also in the fundamental mathematical features of 

these interesting operators (Li & Zeng, 2015). Many physical 

phenomena, such as the behaviour of biological and mechatronic 

systems, rheology, complex viscoelasticity, anomalous diffusion, 

and so on, cannot be well defined and justified based on partial 

calculus. This has led researchers to explore alternative 

approaches, as highlighted by Baleanu and Shiri (2015), Miller and 

Ross (1993), and Podlubny (1993). In distinct fields such as science 

and engineering, fractional differential equations have many 

practical applications. Numerous substantial and technical 

structures, such as dielectric polarisation methods, viscoelastic 

systems, and electrode-electrolyte polarisation, are modelled 

using fractional derivatives (Almeida & Bastos, 2016; Gowrisankar 

& Uthayakumar, 2016). As a result of the expanding applications, 

many numerical approaches for solving these equations have 

been developed, including the wavelet method (Chen et al., 

2012), the generalised differential transform method, the 

modified homotopy method (Odibat & Momani, 2008), the finite 

difference method (Sun et al., 2012), and so on. Non-linear 

phenomena can be seen in several scientific fields, including fluid 

dynamics, plasma physics, solid-state physics, chemical kinetics, 

engineering, and other fields. The mathematical technique of 

wavelet analysis is well-known and extensively applied. Wavelets 

are a set of expressions that have been combined to generate a 

sum of basic functions, and to generate these basic functions, a 

mother wavelet is translated and compressed. Therefore, it 

produces locality and smoothness properties. The use of wavelets 

has aroused researchers’ interest in solving conventional ordinary 

and partial differential equations numerically. Numerous 

traditional wavelet techniques for solving these equations have 

recently been expanded by researchers. Numerical solutions and 

numerical integration of fractional ordinary and partial 

differential equations are two further wavelet applications in 

practical mathematics. For the time being, wavelets such as the 

B-spline, Legendre wavelet, Haar wavelet, Daubechies wavelet 

and Boubaker wavelet are used (Kobra & Mohsen, 2021). Many 

studies have employed the Haar scale wavelet, a wavelet that is 

orthonormal with compact support (Saeed & Rehman, 2013; Shah 

et al., 2017). A fractional differential equation is converted into an 

algebraic structure with a finite number of variables by using Haar 

wavelets (Amin et al., 2021). In 2018, HS3WM was used by Mittal 

and Pandit to solve a variety of differential equations and 

expressed that many various types of mathematical models 

controlled by differential equations, such as dispersive equations 

(Kumar & Gupta, 2022) and second-order linear 

integrodifferential equations (Kumar & Bakhtawar, 2022), can be 

equally capable of solving these wavelet bases (Mittal et al., 
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2018). They also depicted that, in terms of convergence, the 

HS3WM is more rapidly convergent than the Haar scale-2 

wavelet. Furthermore, the attributes of the solution to the non-

linear fractional differential equation are yet to be investigated 

using HS3WMs. This inspires us to introduce a new technique for 

analysing the behaviour of fractional equation-governed systems 

by employing the HS3WM. 

 

The following types of differential equations are used to assess 

the applicability of modified HS3WM (Arora et al., 2020). 

 

D𝑢𝛼(𝑧) = 𝐺(𝑧, 𝑢(𝑧), 𝑢′(𝑧), 𝑢"(𝑧))                                             (1) 

 

With the given set of initial and boundary conditions, 

 

Initial conditions: 𝑢(0) = 𝜇1and 𝑢′(0) = 𝜇2   (2) 

Dirichlet boundary conditions: 𝑢(0) = 𝜇3 and 𝑢(1) = 𝜇4  (3) 

 

The manuscript is organised in the following sections: The 

fundamental definitions of fractional calculus are provided in 

Section 2. The HS3W and structure of its family in explicit forms, 

as well as the process for finding their integrals, were briefly 

discussed in Section 3. Section 4 explains the Quasilinearisation 

technique to solve a non-linear term in a differential equation. In 

Section 5, the present approach is used to solve five distinct models 

of fractional differential equations to evaluate their efficiency and 

performance. The conclusion drawn from the data, as well as future 

study ideas, is presented in Section 6. 

 

 

2. Basic Definition of Fractional Calculus 
 

In the given section, we discussed the basic definitions of fractional differentiation and integration. 

Reimann Liouville Fractional differential operator of order 𝛼: For the positive real numbers 𝛼, t across the interval [m, n], the fractional 

differential operator established by Riemann-Liouville is given by Das (2011): 

 

𝑑𝛼𝑓(𝑡) =
1

𝛤(𝑝 − 𝛼)
[
𝑑

𝑑𝑡
]
𝑝

∫ 𝑓(𝑥)(𝑡 − 𝑥)𝑝−𝛼−1𝑑𝑥
𝑛

𝑚

 

 

                                        where 𝛼 denotes the order of the derivative and 𝑡𝜖 [m, n]. 

 

Caputo fractional differential operator of order 𝛼: For positive real numbers 𝛼, t, the fractional differential operator developed by Caputo, 

an Italian mathematician, is (Shah et al., 2022): 

 

𝑑𝛼𝑓(𝑡) =
1

𝛤(𝑝 − 𝛼)
∫ [

𝑑

𝑑𝑡
]
𝑝

𝑓(𝑥)(𝑡 − 𝑥)𝑝𝑑𝑥
𝑛

𝑚

  

 

                                        where 𝛼 denotes the order of the derivative and 𝑡𝜖 [m, n]. 

 

3. Haar Scale-3 Wavelet 
 

The main difference between Haar scale-2 wavelets is that the construction of the entire wavelet family can be done only by one mother 

wavelet, whereas in the HS3W, for the construction of the entire wavelet family, two distinct shapes of mother wavelets are responsible. 

Due to this, with the help of HS3W, the rate of convergence of the solution has increased. With dilation factor three, the family of HS3W with 

detailed information about Haar function, father wavelet, and symmetric and antisymmetric mother wavelets is provided below (Arora et 

al., 2020; Shiralashetti & Deshi, 2016).      

𝑓(𝑧) ≈ 𝑐1𝜙1(𝑧) + ∑ 𝑐𝑖𝜑𝑖
1(𝑧)

∞

𝑒𝑣𝑒𝑛 𝑖𝑛𝑑𝑒𝑥 𝑖 ≥2

+ ∑ 𝑐𝑖𝜑𝑖
2(𝑧)

∞

𝑜𝑑𝑑 𝑖𝑛𝑑𝑒𝑥 𝑖 ≥3

 

  

Hence, the generalised form of the HS3-W family can be expressed in the form of: 

 

ℎ𝑖(𝑡) =  𝜙(𝑡) =  {
1          ,    𝑎 ≤ 𝑡 < 𝑏 
0           ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑜𝑟 𝑖 = 1 

 

ℎ𝑖(𝑡) = 𝜑𝑖
1(3𝑗 − 𝑘) =

1

√2
{

−1        𝜒11(𝑖) ≤ 𝑡 <  𝜒12(𝑖) 
2          𝜒12(𝑖) ≤ 𝑡 <  𝜒13 (𝑖)

−1         𝜒13(𝑖) ≤ 𝑡 <  𝜒14 (𝑖)
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓𝑜𝑟 𝑖 = 2,4,6. . . . . ,3𝑝 − 1 
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ℎ𝑖(𝑡) = 𝜑𝑖
2(3𝑗 − 𝑘) = √

3

2
{

1         𝜒11(𝑖) ≤ 𝑡 <  𝜒12(𝑖) 
0          𝜒12(𝑖) ≤ 𝑡 <  𝜒13(𝑖) 

−1         𝜒13(𝑖) ≤ 𝑡 <  𝜒14(𝑖) 
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑜𝑟 𝑖 = 1,3,5. . . . . . ,3𝑝 

 

𝜒11(𝑖) = 𝑎 + (𝑏 − 𝑎)
𝑘

𝑝
, 𝜒12(𝑖) = 𝑎 + (𝑏 − 𝑎)

3𝑘+1

3𝑝
, 𝜒13 = 𝑎 + (𝑏 − 𝑎)

3𝑘+2

3𝑝
, 𝜒14 = 𝑎 + (𝑏 − 𝑎)

𝑘+1

𝑝
. Here, 𝑝 = 3𝑗 , 𝑗 =

0,1,2,3, . . . . . , 𝑘 = 0,1,2, . . . . , 𝑝 − 1. 

 

The translation characteristics, resolution level (dilation factor), and wavelet number of the wavelet family are represented by k, j, and i, 

respectively. We defined integrals for HS3W as follows: 

∫ 𝜙𝑖,𝑠(𝑟)𝑑𝑟
𝑥

0

= 𝜙𝑖,𝑠+1(𝑟) = {

𝑟𝑠

𝛤(𝑠 + 1)
                        ,                             𝑎 ≤ 𝑟 < 𝑏       

0                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

∫ 𝜑𝑖,𝑠
1(𝑟)𝑑𝑟

𝑥

0

= 𝜑𝑖,𝑠+1

1

(𝑟) =
1

√2

{
 
 
 
 

 
 
 
 

0                                                                                                               ;  0 ≤ 𝑟 < 𝜒11(𝑖)

−[𝑟 − 𝜒11(𝑖)]
𝑠 

𝛤(𝑠 + 1)
                                                                                              ; 𝜒11(𝑖) ≤ 𝑟 < 𝜒12(𝑖)    

3[𝑟 − 𝜒12(𝑖)]
𝑠 − [𝑟 − 𝜒11(𝑖)]

𝑠

𝛤(𝑠 + 1)
                                                                ;  𝜒12(𝑖) ≤ 𝑟 < 𝜒13(𝑖)   

 
3[𝑟 − 𝜒12(𝑖)]

𝑠 − 3[𝑟 − 𝜒13(𝑖)]
𝑠 − [𝑟 − 𝜒11(𝑖)]

𝑠

𝛤(𝑠 + 1)
                           ; 𝜒13(𝑖) ≤ 𝑟 < 𝜒14(𝑖)  

3[𝑟 − 𝜒12(𝑖)]
𝑠 − 3[𝑟 − 𝜒13(𝑖)]

𝑠 − [𝑟 − 𝜒11(𝑖)]
𝑠 + [𝑟 − 𝜒14(𝑖)]

𝑠

𝛤(𝑠 + 1)
; 𝜒14(𝑖) ≤ 𝑟 < 1

 

 

 ∫ 𝜑𝑖,𝑠
2(𝑟)𝑑𝑟

𝑥

0

= 𝜑𝑖,𝑠+1

2

(𝑟) = √
3

2

{
 
 
 
 

 
 
 
 

 

0                                                                                                          ;  0 ≤ 𝑟 < 𝜒11(𝑖)

[𝑟 − 𝜒11(𝑖)]
𝑠

𝛤(𝑠 + 1)
                                                                                        ;  𝜒11(𝑖) ≤ 𝑟 < 𝜒12(𝑖)

[𝑟 − 𝜒11(𝑖)]
𝑠 − [𝑟 − 𝜒12(𝑖)]

𝑠

𝛤(𝑠 + 1)
                                                             ;   𝜒12(𝑖) ≤ 𝑟 < 𝜒13(𝑖)     

[𝑟 − 𝜒11(𝑖)]
𝑠 − [𝑟 − 𝜒12(𝑖)]

𝑠 − [𝑟 − 𝜒13(𝑖)]
𝑠

𝛤(𝑠 + 1)
                         ;  𝜒13(𝑖) ≤ 𝑟 < 𝜒14(𝑖)

[𝑟 − 𝜒11(𝑖)]
𝑠 − 3[𝑟 − 𝜒12(𝑖)]

𝑠 − [𝑟 − 𝜒13(𝑖)]
𝑠 + [𝑟 − 𝜒14(𝑖)]

𝑠

𝛤(𝑠 + 1)
    ;  𝜒14(𝑖) ≤ 𝑟 < 1

 

 
4. Quasilinearisation Technique  
 

Basically, the Quasilinearisation technique is a generalised form of the Newton-Raphson technique. It converges to a solution in its exact 

form. Quadratically, it must show monotone convergence (Saeed & Rehman, 2013). Here, consider a non-linear second-order differential 

equation: 

𝜓′′(𝜐) = 𝑘(𝜐, 𝜓(𝜐))                                                                                                      (4) 

 

With boundary conditions: 

 

𝜓(𝑎1) = 𝜃1, 𝜓(𝑏1) = 𝜃2;  𝑎1 ≤ 𝜐 ≤ 𝑏1                                           

 

Here, 𝑘 is in terms of 𝜓(𝜐). Let us choose an approximation at the initial step of solution 𝜓(𝜐). Let us say 𝜓0(𝜐). 𝑘 can be expanded 

around 𝜓0(𝜐) and is written in the form 

 

𝑘(𝜓(𝜐), 𝜐) = 𝑘(𝜓0(𝜐), 𝜐) + (𝜓(𝜐) − 𝜓0(𝜐) )𝑘𝜓0(𝜐) (𝜓0(𝜐) , 𝜐)                                      (5) 

𝜓′′(𝜐) = 𝑘(𝜓0(𝜐), 𝜐) + (𝜓(𝜐) − 𝜓0(𝜐) )𝑘𝜓0(𝜐) (𝜓0(𝜐) , 𝜐)                                             (6)       

𝜓′′(𝜐) = 𝑘(𝜓1(𝜐), 𝜐) + (𝜓(𝜐) − 𝜓1(𝜐) )𝑘𝜓1(𝜐) (𝜓1(𝜐) , 𝜐)                                             (7) 

The form of a recurrence relationship is: 

𝜓𝑠+1
′′(𝜐) = 𝑘(𝜓𝑠(𝜐), 𝜐) + (𝜓(𝜐) − 𝜓𝑠(𝜐) )𝑘𝜓𝑠(𝜐) (𝜓𝑠(𝜐) , 𝜐)                                               (8) 

 

for obtaining 𝜓𝑠+1(𝜐), here, use 𝜓𝑠(𝜐), whose value is already known. A non-linear differential equation with the required conditions is 

given as follows: 
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𝜓𝑠+1(𝜐) = 𝛼,𝜓𝑠(𝜐) = 𝛽.                                                                                                   (9) 

 

Now, consider the non-linear second-order differential equation of the form: 

 

𝜓′′(𝜐) = 𝑘(𝜓′(𝜐), 𝜓(𝜐), 𝜐) 

 

Here, the first derivative 𝑞′(𝑚) can be considered as another function 

 

𝜓𝑠+1
′′(𝜐) = 𝑘(𝜓′(𝜐), 𝜓(𝜐), 𝜐) + (𝜓𝑠+1

′ (𝜐) − 𝜓𝑠
′(𝜐)) 𝑘𝜓𝑠′(𝜐)(𝜓𝑠

′(𝜐), 𝜓𝑠(𝜐), 𝜐)) + (𝜓𝑠+1(𝜐) − 𝜓𝑠(𝜐)) k (𝜓𝑠
′(𝜐), 𝜓𝑠(𝜐), 𝜐)                   (10) 

 

With boundary conditions 𝜓𝑠+1(𝜐) = 𝛼, 𝜓𝑠(𝜐) = 𝛽.                                                      (11) 

 

Follow the same technique to establish the recurrence relation for higher-order non-linear differential equations. 

 

𝐿𝑗𝜓𝑠+1(𝜐) = 𝑘(𝜓𝑠(𝜐), 𝜓𝑠
′(𝜐). . . . . . . 𝜓𝑠

𝑗−1
(𝜐), 𝜐) + ∑ (𝜓𝑠+1

𝑝
(𝜐) − 𝜓𝑠

𝑝
(𝜐))𝑛−1

𝑝=0 𝑘𝜓𝑝(𝜓𝑠
′(𝜐), 𝜓𝑠(𝜐), . . . . , 𝜓𝑠

𝑗−1
(𝜐), 𝜐)                    (12) 

 

The order of the differential equation is j; the above equation is linear, and it can be solved recursively, 𝜓𝑠(𝜐), if it has a known value and 

can be used to get the value of 𝜓𝑠+1(𝜐). 

 

5. Applications of Fractional Differential Equations 
 

In this part, the HS3WM is used to solve certain numerical problems for solving linear as well as non-linear fractional differential equations 

and compare the results with the results obtained by methods available in the literature to demonstrate the method’s compatibility. 

 

Numerical Experiment No. 1: Fractional Riccati Equation 

 

                             𝐷𝛼𝑦(𝑥) = −𝑦2(𝑥) + 1, 𝑓𝑜𝑟 𝑥 ≥ 0, 0 ≤ 𝛼 ≤ 1                                    (13)                     

                                             

Subject to the initial condition y (0) = 0. 

 

exact solution at 𝛼 = 1, 

                                          𝑦(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1
                                                                                 (14)  

 

Solution: 

Applying the Quasilinearisation technique to the non-linear term of equation (13), we get 

 

                                          𝐷𝛼𝑦𝑠+1(𝑥) + 2 𝑦𝑠(𝑥)𝑦𝑠+1(𝑥) = 𝑦𝑠
2 + 1, 𝑥 ≥ 0              (15) 

 

With the initial condition 𝑦𝑠+1(0) = 0, we applied HS3WM to equation (15), and we approximated the term containing the highest 

derivatives by Haar wavelet series as follows: 

                                            𝐷𝛼𝑦𝑠+1(𝑥) =∑𝑐𝑙ℎ𝑙(𝑥)                                                    (16)

3𝑀

𝑙=1

 

 

On integrating the above equation (16), we obtained the lower derivatives, and by using the initial condition, we have, 

 

                                         𝑦𝑠+1(𝑥) =∑𝑐𝑙𝑃𝛼,𝑙(𝑥)                                                           (17)

3𝑀

𝑙=1

 

 

Now, substituting equations (16) and (17) in equation (15), we get 

 

                      ∑𝑐𝑙[ℎ𝑙(𝑥) + 2 𝑦𝑠(𝑥)𝑃𝛼,𝑙(𝑥)] = 𝑦𝑠
2(𝑥) + 1                                               (18)

3𝑀

𝑙=1
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For  𝛼 = 1, we assigned the differential order to equation (13) and at J = 2 resolution level. Tables 1 and 2 show the comparative study of 

the exact and approximate solutions as well as the values of errors, respectively, derived using the Haar scale-3 wavelet technique, and 

graphical results are shown in Figure 1. The absolute inaccuracy decreases as the number of iterations increases. Using the Quasilinearisation 

technique at a given level of resolution, the precise answer at 𝛼 = 1 and the Haar wavelet resolution at various 𝛼′𝑠  are demonstrated in 

Figure 2. 

 

 

Table 1. Comparison of Exact Value and Approximate Value at Different Values of x and Result Comparison by Two Different Methods 

x Exact Value Approx. value Absolute Error by 

HS3WM 

Kobra, 2021 

0.1 0.01851640192288 0.018512172212923 2.8650e-05 6.11e-05 

0.2 0.05549847010902 0.055485850362306 4.2584e-05 1.16e-04 

0.3 0.092328886151755 0.092308082564065 5.9053e-05 1.12e-04 

0.4 0.128908385222714 0.128879735027882 6.7831e-05 8.34e-04 

0.5 0.165140412924629 0.165104375053012 6.9465e-05 6.69e-03 

0.6 0.200932122324545 0.200889264899714 6.6312e-05 6.64e-03 

0.7 0.236195287939167 0.236146273143560 5.7972e-05 6.24e-04 

0.8 0.270847118516721 0.270792685450088 4.6444e-05 5.86e-03 

0.9 0.304810954186844 0.304751900397517 3.7996e-05 1.48e-04 

 

 

Table 2. Comparison of Value of Error of L2 Error and L∞ Errors at Different Levels of Resolution. 

Level of resolution J=2 J=3 J=4 J=5 

HSWM3 𝐿2𝑒𝑟𝑟𝑜𝑟 1.0785e-04 1.1896e-05 1.3217e-06 1.5412e-07 

HSWM3 𝐿∞𝑒𝑟𝑟𝑜𝑟 6.9465e-05 7.7184e-06 8.5760e-07 9.7023e-08 

 

 

 

 
Figure 1. Graphical Representation of the Exact Solution and the Numerical Solution at 𝛼 = 1 
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Figure 2. Graphical Representation of the Numerical Solution for Different Values of α Lies Between 0 and 1. At j = 2 Resolution Level. 

 

Numerical Experiment No. 2: Fractional Vander-Pol Oscillator Problem 

 

𝐷𝛼𝑦(𝑥) +
𝑑𝑦(𝑥)

𝑑𝑥
+ 𝑦(𝑥) + 𝑦2(𝑥)

𝑑𝑦(𝑥)

𝑑𝑥
= 2 𝑐𝑜𝑠(𝑥) − 𝑐𝑜𝑠3(𝑥), 1 ≤ 𝛼 ≤ 2       (19) 

 

Subject to early circumstances: y (0) = 0, 𝑦′(0) = 1 

At 𝛼 = 2, the precise answer that exists in the literature (Odibat & Momani, 2008) is given by: y(x)= sin(x) 

Solution: After applying the Quasilinearisation technique to equation (19), we get 

 

   𝐷𝛼𝑦𝑠+1(𝑥) + (1 + 2𝑦𝑠(𝑥)𝑦𝑠
′(𝑥))𝑦𝑠+1(𝑥) + (1 + 𝑦𝑠

2(𝑥))𝑦𝑠+1
′(𝑥) = 2𝑦𝑠

′(𝑥)𝑦𝑠
2(𝑥) + 2𝑐𝑜𝑠(𝑥) − 𝑐𝑜𝑠3(𝑥), 1 ≤ 𝛼

≤ 2                             (20) 

 

With the initial condition 𝑦𝑠+1(0) = 0, 𝑦𝑠
′(0) = 1, we applied the Haar scale-3 method to (20), and we approximated the term with the 

highest derivatives by the Haar wavelet series as follows: 

                                        𝐷𝛼𝑦𝑠+1(𝑥) =∑𝑐𝑙ℎ𝑙(𝑥)                                                                  (21)

3𝑀

𝑙=1

 

On integrating the above equation (21), we obtained the lower derivatives, and by using the initial condition, we have 

                                     𝑦𝑠+1(𝑥) =∑𝑐𝑙𝑃𝛼,𝑙(𝑥)                                                                      (22)

3𝑀

𝑙=1

 

 

Now, substituting equations (21) and (22) in equation (20), we get 

 

∑𝑐𝑙[

3𝑀

𝑙=1

ℎ𝑙(𝑥) + (1 + 2𝑦𝑠(𝑥) 𝑦𝑠
′(𝑥)) 𝑃𝛼,𝑙(𝑥) + (1 + 𝑦𝑠

2(𝑥))𝑃𝛼−1,𝑙(𝑥)]

= 2𝑦𝑠
2(𝑥)𝑦𝑠

′(𝑥) − (1 + 2𝑦𝑠
′(𝑥)𝑦𝑠(𝑥) )𝑥 − 1−𝑦𝑠

2(𝑥) + 2𝑐𝑜𝑠(𝑥)

− 𝑐𝑜𝑠3(𝑥)                                                                                                   (23) 

 

With initial approximations 𝑦0(𝑥) = 0, 𝑦0
′(𝑥) = 1 

 

We assigned the differential order to equation (20) for 𝛼 = 2 and the level of resolution to J = 2. Tables 3 and 4 show the comparative 

study of the exact and approximate solutions as well as the values of errors, respectively, derived using the Haar scale-3 wavelet technique, 

and graphical results are shown in Figure 3. With more iterations, the absolute error decreases. The precise solution at 𝛼 = 1 and the Haar 

wavelet solution at distinct 𝛼′𝑠 are represented in Figure. 4 via the Quasilinearisation technique at a fixed level of resolution. 
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Table 3. Comparison of the Exact Value and the Approximate Value at Different Values of x and Discussion of Absolute Error by Scale-3 Haar 

Wavelets with Haar Scale Wavelets 

x Exact Value Approx. value Saeed, 2017 Absolute Error by 

HS3WM 

0.1 0.0998334166 0.0998334056 0.0998333872 2.89934e-06 

0.2 0.1986693308 0.1986693108 0.1986692768 8.67113e-06 

0.3 0.2955202067 0.2955202012 0.2955201331 1.44070e-05 

0.4 0.3894183423 0.3894182990 0.3894182543 2.01071e-05 

0.5 0.4794255386 0.4794255100 0.4794254413 2.57714e-05 

0.6 0.5646424734 0.5646423900 0.5646423719 3.13998e-05 

0.7 0.6442176872 0.6442176329 0.6442175863 3.69924e-05 

0.8 0.7173560909 0.7173560600 0.7173559950 4.25492e-05 

0.9 0.7833269096 0.7833268874 0.7833268225 4.80701e-05 

 

Table 4. Comparison of the Value of the Error of the Scale-3 Haar Wavelet at Different Levels of Resolution. 

Level of resolution J=2 J=3 J=4 

HSWM3 𝐿2𝑒𝑟𝑟𝑜𝑟 6.33395260e-05 7.03695009e-06 7.81873793e-07 

HSWM3 𝐿∞𝑒𝑟𝑟𝑜𝑟 4.12718973e-05 4.58592395e-06 5.09566047e-07 

 

 

 
Figure 3. Graphical Representation of the Exact Solution and the Numerical Solution 
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Figure 4. Graphical Representation of Numerical Solution for Different Values of 𝛼 Lies Between 1 and 2. At j = 2 Resolution Level 

 

 Numerical Experiment No. 3: Non-linear Oscillator Ordinary Differential Equation 

 

𝐷𝛼𝑦(𝑥) + (𝑦′)2(𝑥) − 𝑦(𝑥) + 𝑦2(𝑥) − 1 = 0,   1 < 𝛼 ≤ 2                                 (24) 

 

With the initial condition y (0) = 2, 𝑦′(0) = 0 

The value of the exact solution at 𝛼 = 2 given as, 

 

                                                     y(x)=1+cos(x)                                                  

 

Solution: 

Applying the Quasilinearisation technique to equation (24) and the equation becomes 

𝐷𝛼𝑦𝑠+1(𝑥) + 2𝑦𝑠
′(𝑥)𝑦𝑠+1

′ (𝑥) − (1 − 2𝑦𝑠(𝑥))𝑦𝑠+1(𝑥) = 𝑦𝑠
2(𝑥) + (𝑦′

𝑠
)2(𝑥) + 1   (25) 

With the initial conditions 𝑦𝑠+1(0) = 0, 𝑦𝑠
′(0) = 0, 

 

We applied HS3WM to (24), and we approximated the term that contains the highest derivatives by Haar wavelet series as follows: 

                             𝐷𝛼𝑦𝑠+1(𝑥) =∑𝑐𝑙ℎ𝑙(𝑥)                                                            (26)

3𝑀

𝑙=1

 

 

On integrating the above equation (26), we obtained the lower derivatives, and by using the initial condition, we have 

 

                        𝑦𝑠+1(𝑥) =∑𝑐𝑙𝑃𝛼,𝑙(𝑥) + 2                                                           (27)

3𝑀

𝑙=1

 

 

                        𝑦′
𝑠+1
(𝑥) =∑𝑐𝑙𝑃𝛼−1,𝑙(𝑥)                                                            (28

3𝑀

𝑙=1

) 

 

Now, substituting equations (26), (27), and (25) in equation (24), we get 

 

∑ 𝑐𝑙[ℎ𝑙(𝑥) + 2𝑦𝑠
′(𝑥)3𝑀

𝑙=1 𝑃𝛼−1,𝑙(𝑥) − (1 − 2𝑦𝑠
′(𝑥)) 𝑃𝛼,𝑙(𝑥)] =                                                 𝑦𝑠

2(𝑥) + 𝑦𝑠
′2(𝑥) + 2(1 − 2𝑦𝑠(𝑥)) + 1  (29)  

 

With initial conditions 𝑦0(𝑥) = 0, 𝑦0
′ (𝑥) = 0 
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For 𝛼 = 2, we assigned the differential order to equation 25 and at J = 2 resolution level. Tables 5 and 6 show the comparative study of 

the exact and approximate solutions as well as the values of errors, respectively, derived using the Haar scale-3 wavelet technique, and 

graphical results are shown in Figure 5. The absolute inaccuracy decreases as the number of iterations increases. At a constant level of 

resolution, the exact solution at 𝛼 = 1 and the Haar wavelet solutions at various 𝛼′𝑠 are shown in Figure 6. 

 

Table 5. Comparison of Exact Value and Approximate Value at Different Values of x. Discussion of Absolute Error by Scale-3 Haar Wavelets 

with Haar Scale Wavelets. 

x Exact Value Approx Value Saeed 2013 Absolute Error by 

HS3WM 

0.1 1.995004165 1.995004166 1.995004166 3.734e-06 

0.2 1.980066578 1.980066579 1.980066581 1.568e-05 

0.3 1.955336489 1.955336492 1.955336496 3.958e-05 

0.4 1.921060994 1.921060999 1.921061007 7.543e-05 

0.5 1.877582562 1.877582576 1.877582583 1.232e-04 

0.6 1.825335615 1.825335628 1.825335647 1.830e-04 

0.7 1.764842187 1.764842204 1.764842233 2.547e-04 

0.8 1.696706709 1.696706740 1.696706772 3.384e-04 

0.9 1.621609968 1.621609998 1.621601051 4.341e-04 

 

Table 6. Comparison of Values of the Error Scale-3 Haar Wavelet at Different Levels of Resolution. 

Level of resolution J=2 J=3 J=4 

HSWM3 𝐿2𝑒𝑟𝑟𝑜𝑟 8.69048147e-06 9.66118381e-07 1.07352784e-07 

HSWM3 𝐿∞𝑒𝑟𝑟𝑜𝑟 3.71196461e-05 4.25861607e-06 4.78242174e-07 

 

 
Figure 5. Graphical Representation of the Exact Solution and the Numerical Solution 
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Figure 6. Graphical Representation of the Numerical Solution for Different Values of α Lies Between 1 and 2. At j = 2 Resolution Level. 

 

Numerical Experiment No. 4: Composite Fractional Oscillation Equation 

                                           𝐷𝛼𝑦(𝑥) + 𝑦(𝑥) = 𝑓(𝑥), 0 < 𝛼 < 1                                                      (30) 

 

With initial condition  𝑦(0) = 0, where 𝑓(𝑥) = 𝑥2 +
2𝑥2−𝛼

𝛤(3−𝛼)
                                                       (31) 

 

For 𝛼 = 1, the exact solution of the equation is y(x)=𝑥2 

 

Solution: 

We applied the Haar scale-3 method to (30), and we estimated the advanced derivatives term by Haar wavelet series as follows: 

                                            𝐷𝛼𝑦(𝑥) =∑𝑐𝑙ℎ𝑙(𝑥)                                                         (32)

3𝑀

𝑙=1

 

 

On integrating the above equation (32), we obtained the lower derivatives, and by using the initial condition, we have 

 

                                      𝑦(𝑥) =∑𝑐𝑙𝑃𝛼,𝑙(𝑥)                                                                  (33)

3𝑀

𝑙=1

 

 

now using equations (33) and (32) in equation (30). 

 

∑ 𝑐𝑙[ℎ𝑙(𝑥) + 𝑃𝛼,𝑙(𝑥)] =  𝑥
2 +

2𝑥2−𝛼

𝛤(3−𝛼)
                      3𝑀

𝑙=1                                               (34) 

 

We assigned the differential order to equation 30 for 𝛼 = 1 and the level of resolution to J = 2. Table 7 depicts the absolute error at 𝛼 = 1 

and other fractional values of alpha, and Table 8 presents the value of 𝐿2 and 𝐿∞ error at different values of J. Here, Figure 7 depicts the 

exact and approximate solutions obtained using the HS3WM approach. With more iterations, the absolute error decreases. The precise 

solution at  𝛼 = 1 and the Haar wavelet solution at distinct 𝛼′𝑠 are represented in Figure 8.  
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Table 7. Comparison of Exact Value and Approximate Value at Different Values of x. Discussion of Absolute Error by Scale-3 Haar Wavelet 

with Haar Scale Wavelets at Different Values of 𝛼 

x Exact 

Value 

𝛼 = 1 

Approx. 

Value 

𝛼 = 1 

Absolute error 

at  

𝛼 = 1 

Absolute Error by 

HS3WM 

(𝛼 = 0.25) 

 

Shah 2017 (𝛼 = 0.50) 

 

Shah 2017 

0.1 0.01 0.0101 3.012e-04 4.225e-06 9.000e-03 4.1904e-06 4.000e-03 

0.2 0.04 0.0414 2.797e-04 4.105e-06 8.000e-03 4.3903e-06 5.000e-03 

0.3 0.09 0.0914 2.503e-04 4.004e-06 4.000e-03 4.0882e-06 1.000e-03 

0.4 0.16 0.1609 2.224e-04 3.939e-06 2.800e-03 3.9885e-06 8.000e-03 

0.5 0.25 0.2500 2.085e-04 3.875e-06 6.300e-03 3.9234e-06 2.300e-03 

0.6 0.36 0.3634 1.816e-04 3.843e-06 3.200e-03 3.8435e-06 6.000e-03 

0.7 0.49 0.4923 1.665e-04 3.812e-06 2.000e-03 1.6807e-06 7.000e-03 

0.8 0.64 0.6406 1.490e-04 4.088e-06 9.000e-03 1.5997e-06 0.000 

0.9 0.81 0.8159 1.384e-04 3.796e-06 5.200e-03 1.7160e-06 1.400e-03 

 

Table 8. Comparison of the Value of Error of HS3WM at Different Levels of Resolution 

Level of resolution J=2 J=3 J=4 

HS3WM 𝐿2𝑒𝑟𝑟𝑜𝑟 5.0450146e-04 5.602634e-05 6.2247865e-06 

HS3WM 𝐿∞𝑒𝑟𝑟𝑜𝑟 3.3670033e-04 3.787018e-05 4.2250783e-06 

 

 

 
Figure 7. Graphical Representation of Exact Solutions and Numerical Solutions 
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Figure 8. Graphical Representation of Numerical Solution for Different Values of α Lies Between 0 and 1. At j = 2 Resolution Level. 

 

Numerical Experiment No. 5: Fractional Relaxation-Oscillation Equation 

 

                                           𝑫𝜶𝒚(𝒙) + 𝒚(𝒙) = 𝒇(𝒙), 0 < 𝛼 < 1                                 (35) 

 

With initial conditions y (0) = 0. 

 

Here,         

                                            f(x)=1-4x+5𝑥2- 
4

𝛤(2−𝛼)
𝑥1−2𝛼 +

10

𝛤(3−𝛼)
𝑥2−𝛼                   (36) 

 

for 𝛼 = 1, the exact solution of the given equation is y(x) = 1-4x+5𝑥2 

 

Solution: 

We applied HS3WM to (35) and approximated the term that has derivatives by Haar wavelet series as follows: 

 

                                            𝐷𝛼𝑦(𝑥) = ∑ 𝑐𝑙ℎ𝑙(𝑥)                                                       
3𝑀
𝑙=1          (37) 

 

On integrating the above equation (37), we obtained the lower derivatives, and by using the initial condition, we have 

 

                                      𝑦(𝑥) = ∑ 𝑐𝑙𝑃𝛼,𝑙(𝑥)                                                                      
3𝑀
𝑙=1   (38) 

 

now using equations (37) and (38) in equation (35). 

 

         ∑𝑐𝑙[ℎ𝑙(𝑥) + 𝑃𝛼,𝑙(𝑥)] = 1 − 4𝑥 + 5𝑥
2  −

4

𝛤(2 − 𝛼)
𝑥1−2𝛼 +

10

𝛤(3 − 𝛼)
𝑥2−𝛼  

3𝑀

𝑙=1

                          

 

We assigned the differential order to equation 35 for 𝛼 = 1 and the level of resolution to J = 2. Table 9 depicts the absolute error at 𝛼 = 1 

and other fractional values of alpha, and Table 10 presents the value of 𝐿2 and 𝐿∞ error at different values of J. Here, Figure 7 depicts the 

exact and approximate solutions obtained using the HS3WM approach. With more iterations, the absolute error decreases. The precise 

solution at 𝛼 = 1 and the Haar wavelet solution at distinct 𝛼′𝑠 are represented in Figure 8.  
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Table 9. Comparison of Exact Value and Approximate Value at Different Values of x. Discussion of Absolute Error by Scale-3 Haar Wavelet 

with Haar Scale Wavelets at Different Values of 𝛼. 

x Exact 

Value 𝛼 =

1 

Approxim

ate Value 

𝛼 = 1 

Absolute error 

at  

𝛼 = 1 

Absolute Error 

by HS3WM. 

(𝛼 = 0.25) 

Shah 2017 Absolute Error 

by HS3WM 

(𝛼 = 0.50) 

Shah 2017 

0.1 0.6500 0.6475 1.506e-03 2.1038e-05 8.000e-03 2.0525e-05 2.300e-03 

0.2 0.4000 0.4058 1.399e-03 2.0441e-05 1.700e-03 1.4646e-05 3.000e-03 

0.3 0.2500 0.2500 1.252e-03 1.9942e-05 2.000e-03 1.3941e-05 1.000e-03 

0.4 0.2000 0.2006 1.121e-03 1.9536e-05 3.100e-03 1.3601e-05 2.200e-03 

0.5 0.2500 0.2542 1.040e-03 1.5579e-05 1.210e-03 1.1873e-05 6.800e-03 

0.6 0.4000 0.4142 9.314e-04 1.5199e-05 8.400e-03 1.0238e-05 2.200e-03 

0.7 0.6500 0.6599 8.333e-04 9.1999e-04 6.000e-03 1.0017e-05 2.600e-03 

0.8 1.0000 1.0016 7.456e-04 8.9387e-04 2.700e-03 9.5078e-05 0.0000 

0.9 1.4500 1.4665 6.678e-04 7.8681e-04 1.720e-03 1.9536e-05 5.300e-03 

 

 

 

Table 10. Comparison of Value of Error of Scale-2 and Scale-3 Haar Wavelets at Different Levels of Resolution. 

Level of resolution J=2 J=3 J=4 

HSWM3 𝐿2𝑒𝑟𝑟𝑜𝑟 1.382717e-03 1.53448107e-04 1.704744e-05 

HSWM3 𝐿∞𝑒𝑟𝑟𝑜𝑟 1.683501e-03 1.89350905e-04 2.112539e-05 

 

 

 
Figure 9. Graphical Representation of Exact Solutions and Numerical Solutions 
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Figure 10. Graphical Representation of Numerical Solution for Different Values of α Lies Between 0 and 1. At j = 2 Resolution Level. 

 

6. Conclusions and Results 
 

The Haar scale-3 wavelet operational matrix of fractional 

order integration is used to solve fractional differential equations 

numerically in this article. This proposed method has been used 

to analyse both linear and non-linear problems with success. The 

study found that the applied technique is less complicated and 

more convergent than others. The proposed method is used to 

discuss numerical problems of this kind with reliability. 

Furthermore, the approaches for error analysis are thoroughly 

examined with the help of MATLAB, which shows good 

agreement of the numerical solution with the exact solution and 

other solutions existing in the literature. Through our study, we 

conclude that in the future, the proposed method could be 

applied to many fractional differential equations to generate 

more precise findings or to equations that have higher-order 

fractional derivatives. 
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