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Abstract: The COVID-19 pandemic has negatively impacted the global economy and society. World Health Organization (WHO) reported 
that as of early July 2023, the virus has infected more than 690 million individuals and has resulted in more than 6.9 million deaths 
worldwide. This study aims to investigate spatial epidemiological factors of COVID-19 in the Middle East and North Africa (MENA) region. 
By employing various spatial modeling techniques, this study establishes that multiscale geographically weighted regression (MGWR) is 
the best-fitted model, with the lowest residual sum of squares (11.22) and the lowest Akaike’s Information Criteria (AIC) value (58.41), 
explaining 84.3% of the variance (R2=0.843). Our study finds that population density, total vaccination doses, unemployment, and GDP 
per capita are critical factors associated with COVID-19 in the MENA region. These valuable insights provide policymakers and public 
healthcare experts with the information needed to develop targeted interventions that can mitigate risk factors related to the COVID-19 
pandemic. 
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1. Introduction 

 
SARS-CoV-2, also known as COVID-19, is a virus that causes 

severe acute respiratory syndrome. This highly contagious and 
novel pathogen first emerged in Wuhan, China, in late 2019. It 
quickly became a global pandemic, posing major challenges to 
public health systems and negative impacts on the global economy 
and society. While many COVID-19 studies examined the impacts 
of epidemic outbreaks, they tend to focus on specific countries. 
One gap in existing research is the limited use of geospatial data 
for a comprehensive understanding of the disease's incidence and 
impact. For example, (Daniel & Adejumo, 2021) found no clear 
relationship between COVID-19 and population density in Nigeria 
using a binomial regression model. However, when (Bayode et al., 
2022) expanded their analysis in spatial regression, they 
uncovered the significance of population density. Similarly, 
(Iyyanki et al., 2020) applied spatial modeling to identify a sudden 
surge in COVID-19 cases during social isolation or quarantine 
periods. 

In a broader context, the likelihood of COVID-19 cases 
significantly increased due to urbanization and population density 
(Dutta et al., 2021). Their study utilized spatial models, along with 
geographically weighted models, to reach this conclusion. Spatial 
regression has also contributed during vaccination response 
(Ahasan et al., 2020; Franch-Pardo et al., 2020), providing 
valuable insights into the course of COVID-19 and helping identify 
factors contributing to the disease's spread. Consequently, it has 

become essential to implement effective strategies for social 
isolation and mobility restrictions (Jaber, 2022). Thus, geospatial 
data analysis remains critical for an epidemiological investigation 
across various spatial and spatiotemporal scales (Mollalo et al., 
2020). 

Several authors have employed spatial analysis to examine the 
geographical determinants of COVID-19 (Aboalyem et al., 2024; 
Abolfazl Mollalo et al., 2021; Dutta et al., 2021; Mansour et al., 
2021). They have used methods like GWR, MGWR, spatial lag 
model (SLM), and spatial error model (SEM). As mentioned 
earlier, geospatial data analysis provides valuable insights into the 
course of COVID-19 and helps identify regional factors 
contributing to the disease's spread. However, prior studies 
primarily focused on the national level, with no regional analysis 
conducted in the Middle East and North Africa (MENA) region. 
This present study represents the first of its kind in utilizing spatial 
analysis of five distinct models to examine the primary causes of 
the COVID-19 outbreak and assess the presence of geographical 
dependence in the MENA region. 

Globalization has intensified travel, communication, and 
socioeconomic participation, of which indirectly amplified the 
speed, frequency, and geographic reach of diseases (Mansour et 
al., 2021). There is, for example, a geographical link between the 
Middle East and North Africa, indicating that the disease's 
possible effects cannot be overlooked. The aim of this research is 
to investigate the spatial relationship between 13 independent 
variables and the incidence of COVID-19 in MENA countries (Table 
1). The study utilized five statistical models, namely ordinary least 
square (OLS), SLM, SEM GWR, and MGWR. 

This present study found that GDP per capita, unemployment, 
total vaccination, and population density are the main factors that 
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determine the speed of COVID-19 transmission. The findings of 
this study can help develop effective strategies to reduce the 
impact of COVID-19 on people and the global economy. These 
findings may also contribute to evidence-based decision-making 
in public health programs to design interventions to reduce 
transmission and risk causes related to the COVID-19 epidemic in 
the MENA region. The remainder of the paper is organized as 
follows: Section 2 presents the study region and database, Section 3 
describes OLS and spatial analysis, Section 4 presents results, and 
Section 4 discusses OLS and spatial regression results. Conclusions 
are drawn in Section 6. 
 
2. Study Region and Database  

 
Study Region 
The MENA region consists of many countries, from rich oil-

exporting Gulf countries to low- and middle-income countries. 
However, different organizations classify the region differently, 
and the terms (Arab World) and (Greater Middle East) are used 
interchangeably (Seyfi & Hall, 2020). According to the World Bank, 
the region covers 19 countries and accounts for 6.03% of the 
world's population (Wang & Wang, 2021). This includes countries 
like Algeria, Bahrain, Djibouti, Egypt, Iran, Iraq, Israel, Jordan, 
Kuwait, Lebanon, Libya, Morocco, Oman, Palestine, Qatar, Saudi 
Arabia, Somalia, Syria, the United Arab Emirates, and Yemen. 
However, Turkey, Sudan, and Cyprus are occasionally included in 
the MENA region (Gollin et al., 2016; Karim et al., 2022). This study 
is based on the World Bank and the United Nations Statistics 
Division, which listed Algeria, Bahrain, Djibouti, Egypt, Iran, Iraq, 
Sudan, Israel, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, 
Tunisia, Palestine. Qatar, Saudi Arabia, Syria, Somalia, Turkey, 
Cyprus, United Arab Emirates and Yemen as part of the MENA 
region (Fig. 1) (Aminova et al., 2020; Davoodi & Abed, 2003). 

 
Database 
In this analysis, we collected data from Our World in Data, 

International Labor Organization (ILO), and PEMANDU Associates, 
the responsible body for monitoring COVID-19 across the MENA 
region. Our data collection began with the initial reported cases 
in each nation and continued until December 2022. We computed 
the incidence rate at the regional level (Fig. 2). To achieve this, we 
established a geodatabase using GIS software, which includes 
GeoDa 1.20.0.20, QGIS 3.30.2, and ArcMap 10.8.2. Additionally, 
RStudio 2023.06.0 was deployed to link demographic, healthcare, 
and socioeconomic variables into geopolitical boundary shapefile 
(Table 1). 

 

3. Methodology and Methods  
 
Ordinary Least Squares (OLS) 
Multicollinearity diagnostics and forward stepwise regression 

with multiple OLS are used to determine the linear relationship 
between COVID-19 incidence (dependent variable) and 
demography, behavioral, medical, and socioeconomic variable 
groups as follows (Ward & Gleditsch, 2018): 

 
𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝑥𝑥𝑖𝑖𝛽𝛽 + 𝜀𝜀𝑖𝑖 (1) 
𝑥𝑥𝑥𝑥 is the explanatory variables, 𝑦𝑦𝑥𝑥 is the dependent variable, 𝜀𝜀𝑥𝑥 is 
the error term, 𝛽𝛽0 is the intercept, and 𝛽𝛽 is the coefficients 
(Anselin & Arribas-Bel, 2013; Ward & Gleditsch, 2018). In OLS, 
observations must be independent from each other and constant 
with independent error components (Aboalyem & Ismail, 2023). 
OLS implies that the observation at the county level is 
independent and that spatial dependence does not occur (M 
Rahman et al., 2020). 

 
Spatial Lag Model (SLM) 
SLM regression incorporates spatial lagged dependent variables 

into the OLS equation. According to (Sannigrahi et al., 2020), 
spatial lag accounts for the influence or impact of neighbor 
countries or regions (M  Rahman et al., 2020). The weight matrix 
of the SLM takes autocorrelation into account. SLM can be 
illustrated as below: 

 
𝑦𝑦𝑖𝑖  = 𝛽𝛽0 + 𝑥𝑥𝑖𝑖𝛽𝛽 + 𝜌𝜌𝑊𝑊𝑖𝑖𝑦𝑦𝑖𝑖 +  𝜀𝜀𝑖𝑖 (2) 
 
𝑊𝑊𝑥𝑥 is the spatial weights vector; 𝜌𝜌 is the parameter of spatial 

autoregressive; and 𝑥𝑥𝑥𝑥 ,𝛽𝛽0 , 𝛽𝛽 , 𝜀𝜀𝑥𝑥 are same as in Equation 1. The 
weight matrix (𝑊𝑊𝑥𝑥) relates one independent variable to the other 
independent variable and describes how the both independent 
variables interact (Anselin & Arribas-Bel, 2013; Ward & Gleditsch, 
2018). 

 
Spatial Error Model (SEM) 
This model implies that error terms are spatially dependent. 

Consequently, residuals are dissected into error terms and the 
model's overall structure (Abolfazl Mollalo et al., 2021): 

 
𝑦𝑦𝑖𝑖 =  𝛽𝛽0 + 𝑥𝑥𝑖𝑖𝛽𝛽 + 𝜆𝜆𝑊𝑊𝑖𝑖𝜉𝜉𝑖𝑖 + 𝜀𝜀𝑖𝑖 (3) 
 
The spatial component of the error term is denoted by 𝜉𝜉𝑖𝑖, while 

lambda (𝜆𝜆) represents the strength of correlation between the 
elements. The uncorrelated standard error is represented by 𝜀𝜀𝑥𝑥. 
𝑊𝑊𝑥𝑥 is the spatial of weight matrices, 𝑊𝑊𝑥𝑥𝜉𝜉𝑥𝑥 is the strength of the 
correlation between the spatial component of the error term. The 
rest, 𝑥𝑥𝑥𝑥, 𝛽𝛽0, and 𝛽𝛽 are as same as in Equation 1 (Ward & Gleditsch, 
2018). The SEM model compensates spatial error autocorrelation 
through the spatially weight matrices (Dutta et al., 2021). 

 
Geographically Weighted Regression (GWR) 
The GWR builds spatial modelling between an 𝑦𝑦 and 𝑥𝑥𝑥𝑥 variables 

(Comber et al., 2022). As explained below, GWR is a technique 
that establishes the spatial association among variables (Abolfazl 
Mollalo et al., 2021): 

 

𝑦𝑦𝑖𝑖 =  𝛽𝛽𝑖𝑖0  + �𝛽𝛽𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖−1

𝑋𝑋𝑖𝑖𝑖𝑖  +  𝜀𝜀𝑖𝑖       , 𝑥𝑥 =  1, 2,3, … ,𝑛𝑛 (4) 

 
where at country 𝑥𝑥, 𝑦𝑦𝑥𝑥 is the the dependent variable, and 𝛽𝛽𝑥𝑥0 is 
the intercept, 𝛽𝛽𝑥𝑥𝛽𝛽 is the 𝛽𝛽th regression parameter, 𝑋𝑋𝑥𝑥𝛽𝛽 is the value 



 

46 
 

Regular Issue Malaysian Journal of Science 

DOI: https//doi.org/10.22452/mjs.vol43no4.6 
Malaysian Journal of Science 43(4): 44-53 (December 2024) 

of the 𝛽𝛽𝑗𝑗ℎ explanatory parameter, and 𝜀𝜀𝑥𝑥 is an error term (Abolfazl 
Mollalo et al., 2021). Traditional global models cannot consider a 
non-stationary spatial problem (Sannigrahi et al., 2020). 
Consequently, these models estimate average throughout the 
entire area of interest (Deilami & Kamruzzaman, 2017; Hamad et 
al., 2023). The GWR model, in contrast, overrides this restriction 
because of its cumulative local efficiency, which incorporates a 
geographic context from which parameters are estimated 
individually (Oshan et al., 2019). 

 
Multiscale Geographically Weighted Regression (MGWR) 
The Multiscale-GWR is an extension of GWR model that allows 

analysis at multiple scales and bandwidths (Dai et al., 2022). 
Therefore, it relaxes the GWR assumption. The ideal bandwidth 
vector must be derived, with every component representing the 
spatial scale upon which a certain function occurs (Hamad et al., 
2023). Theoretically, MGWR is close to Bayesian framework and 
may offer a more adaptable and scalable framework for analyzing 
multiscale phenomena (Abolfazl Mollalo et al., 2021): 

 

𝑦𝑦𝑖𝑖 = �𝛽𝛽𝑏𝑏𝑏𝑏𝑖𝑖

𝑚𝑚

𝑖𝑖−1

𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖       , 𝑥𝑥 =  1, 2, … ,𝑛𝑛 (5) 

 
At area 𝑥𝑥, 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 is the bandwidth utilized, 𝑋𝑋𝑥𝑥𝛽𝛽 is the value of the 
𝛽𝛽𝑗𝑗ℎ iv parameter (Abolfazl Mollalo et al., 2021; Fotheringham et 
al., 2017). Its advantages over MGWR include its ability to 
accurately capture regional heterogeneity, reduce collinearity, 
and biasedness in the estimates (Oshan et al., 2019). The MGWR 
is often regarded as the generalized additive model (GAM), for 
allowing a back-fitting technique in calibrating MGWR models 
(Buja et al., 1989; Hastie & Tibshirani, 1990). 

 

4. Results  
Table 1 presents the description of the response and explanatory 

variables. At the same time, the statistical summary of the global 
OLS model is shown in Table 2. The best-fitted model will be 
chosen after using the forward stepwise regression technique. 
We found that GDP per capita, unemployment, and the total 
vaccination are essential explanatory variables and significant at 
a 5% level, but the population density is significant at a 10% level. 
Moreover, the significant variables show variance inflation factors 
(VIF) below 10, indicating the absence of serious multicollinearity 
issue (Thompson et al., 2017).  

However, a moderate level of collinearity is evident between the 
total vaccination and GDP per capita variables, as indicated by the 
higher standard errors in the model. Consequently, the OLS 
regression model produced the lowest R-squared value (R2=0.743) 
in comparison to the spatial dependence models. Nevertheless, 
this finding underscores that approximately 26% of the incidence 
rate across MENA countries can be attributed to country-level 
differences, presenting a challenge for OLS in estimating the 
model. To address this challenge, the SEM and SLM models were 
added to the OLS. As improvements, all variables became 
statistically significant at the 5% level, thereby enhancing the OLS 

model. However, due to the previous underestimation of the 
spatial process, the SEM and SLM models may exhibit lower 
standard errors than the OLS estimation (Table 3), indicating 
limited ability to estimate accurately in modeling. 

However, we use GWR and MGWR to solve this issue by 
exploring any local spatial differences. The results demonstrate 
that the value of 𝑅𝑅2 grew from 80.4% in the SLM model, the model 
with the greatest 𝑅𝑅2 globally to 84.3% in the MGWR model, while 
the AIC reduced from 70.06 in the SLM model to 58.41 in the 
MGWR model. Therefore, given that MGWR's coefficient of 
determination was the highest, the model may account for 84.3% 
of all variations in COVID- 19 incidence rates. With a higher AIC of 
58.82 compared to MGWR's with an AIC of 58.41, regular GWR 
had a slightly poorer goodness-of-fit score of 0.840 (Table 4). With 
a higher RSS of 11.38 than MGWR's RSS of 11.22, the residual sum 
of squares behaves similarly to AIC, slightly different across the 
local models. 

Figure 1 shows how the 𝑦𝑦𝑥𝑥 incidence rate of COVID-19 variable is 
distributed across subnational borders. Five models (global and 
local) were to be implemented to understand the linear and 
spatial relationship of independent variables to the incidence of 
COVID-19 in MENA countries. By enabling the computation of 
local levels rather than stationary parameter values, the local-
level modelling procedure was a powerful method that improves 
conventional global regression. Population density and GDP per 
capita significantly impact the explanation of disease incidence 
rates in different MENA countries (Fig. 1). 

Figures 2 and 3 present the results of GWR and MGWR models. 
As shown in Figure 3, while the effect of population density is seen 
at the country level, the COVID-19 infection situation follows a 
similar trend at the regional level for local models. Population 
density is crucial in determining COVID-19 infection rates across 
North African nations, particularly in Morocco, Sudan, Somalia, 
and Djibouti. However, the impact of GDP per capita on COVID-19 
incidences was found to be inconsistent between the models. 

Figure 4 shows that the unemployment indices in the GWR and 
MGWR models are the same and significantly impact the disease 
incidence rates in parts of Asia (Iran, Jordan, and Palestine) and 
northern Africa like Algeria, Egypt, Libya, Morocco, and Tunisia. 
Conversely, both models performed poorly in the countries of the 
southern MENA, namely Djibouti and Somalia. Furthermore, both 
models concluded that the geographical distribution of COVID-
19 incidence rates in Iran, Djibouti, and Somalia could be 
significantly explained by the total vaccine doses coefficient. 

Finally, the spatial distributions of local 𝑅𝑅2 values in the GWR and 
MGWR models are shown in Figure 5. The darker shade shows 
higher values, while the lighter shades show lower values. All 
countries are found to have acceptable local 𝑅𝑅2 values, and the 
model was most suitable for Somalia and Djibouti. Furthermore, 
the independent variables in both models account for at least 80% 
of the variation in Egypt and Palestine; the highest explanation 
percentage comes from Yemen, Somalia, and Djibouti, at 88%. 

 

5. Discussion  
In this study, we analyzed 19 variables, divided into four 
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categories (demographic, behavioral, medical, and 
socioeconomic) that describe the geographic distribution of the 
COVID-19 situation in the MENA countries. We estimated the 
regional distribution of COVID-19 cases using a spatial regression 
and autoregressive model. Our analysis suggests that a 
combination of population density, GDP per capita, 
unemployment rate, and total vaccination response may be 
responsible for differences in the disease incidence rates across 
MENA countries. 

Findings from the GWR and MGWR models show a strong 
relationship between the incidence of diseases in this region and 
population density, GDP per capita, unemployment, and 
vaccination. As the virus continued to spread, healthcare systems 
faced vulnerabilities, the economy declined, and unemployment 
rates rose. Our findings are also consistent with the importance 
of vaccination during the epidemic. 

According to the positive GDP per capita coefficient, increasing 
population density in areas with high GDP per capita will increase 
the probability of contracting COVID-19. The emergence of new 
or different strains can positively impact overall immunity. This 
suggests that outbreaks are more severe in areas with higher 
immunity. 

 

6. Conclusions  
Understanding factors that affect incidence of diseases is 

important, especially for diseases such as COVID-19, which has a 
global impact. The aim of this study is to identify variables that 
may affect the incidence of COVID-19 in MENA countries. We 
investigated the incidence patterns and impact factors of COVID-
19 in the MENA region, using spatial models. Among these 
models, MGWR showed the highest level of fit, strengthening and 
extending previous findings. Regional differences observed in 
MGWR may indicate variations in COVID-19 incidence based on 
the identified independent variables. This study is important for 
future understanding as, to our knowledge, there have been no 
previous studies using spatial trends of COVID-19 incidence in the 
MENA region 
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Table 1: Description of response and explanatory variables and data sources. 
Parameters Description Measurement 

unit  
Source 

Incidence rate 
(response variable)  
 

Cumulative Daily confirmed COVID-19 
cases in the period (Jan 4, 2020, To 
Dec 31, 2022) 

No. of cases 'https://ourworldindata.org/coronavirus' 

Population density 
(explanatory 
variable)  
 

The number of people per MENA 
country is calculated by dividing the 
total number of people by the total 
land area 

people per sq. 
km of land 
area 

https://data.worldbank.org/indicator/ 

GDP per capita 
(explanatory 
variable)  
 

GDP per capita is gross domestic 
product divided by midyear 
population. It is calculated without 
making deductions for depreciation of 
fabricated assets or for depletion and 
degradation of natural resources 

 Most Recent 
Value in US$ 

https://data.worldbank.org/indicator/ 

Total vaccine doses  
(explanatory 
variable)  
 

All COVID-19 vaccine doses, including 
boosters, are counted individually till 
Dec 31, 2022 

No. of cases 'https://ourworldindata.org/coronavirus' 

Unemployment 
(explanatory 
variable)  
 

Unemployment refers to the share of 
the labor force that is without work 
but available for and seeking 
employment in MENA  countries in 
2022 

Index https://ilostat.ilo.org/data/ 

People fully 
vaccinated 
(explanatory 
variable)  
 

Total number of people who received 
all doses prescribed by the initial 
COVID-19 vaccination protocol till Dec 
31, 2022 

No. of cases 'https://ourworldindata.org/coronavirus' 

GDP Gross Domestic 
Product (current 
US$) 
(explanatory 
variable)  
 

The total monetary or market value of 
all the finished goods and services 
produced within a country’s borders 
in 2021 

Most Recent 
Value 
(Millions) 

https://data.worldbank.org/indicator/ 

Population 
(explanatory 
variable)  
 

The last population count of MENA  
countries in 2022 

Total number 
 

https://data.worldbank.org/indicator/ 

Population 
aged 65+ 
(explanatory 
variable)  
 

Total population 65 years of age or 
older in each MENA country in 2022 

Total number 
 

https://data.worldbank.org/indicator/ 

Inflation 
(explanatory 
variable)  
 

Inflation as measured by the 
consumer price index reflects the 
annual percentage change in the cost 
to the average consumer of acquiring 
a basket of goods and services that 
may be fixed or changed at specified 
intervals 

Index https://data.worldbank.org/indicator/ 

Severity index 
(explanatory 
variable)  

The Severity Index factors information 
on proportionate death rates due to 
COVID-19 and confirmed cases as a 

Index https://covid19.pemandu.org/ 
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 factor of the country's population 
Recovery index 
(explanatory 
variable)  
 

The Recovery Index considers 
recovery rates, active cases per 
population, testing levels, and 
countries' ability to detect, respond, 
and treat epidemics based on the 
Global Health Security Index. 

Index https://covid19.pemandu.org/ 

Hospital beds (per 
1,000 people) 
(explanatory 
variable)  
 

The total number of beds available in 
public, private, general, and 
specialized hospitals, and 
rehabilitation centers in each MENA 
country in 2022 

Index https://data.worldbank.org/indicator/ 

Nurses and 
midwives (per 1,000 
people) 
(explanatory 
variable)  
 

Nurses and midwives include 
professional nurses, professional 
midwives, auxiliary nurses, auxiliary 
midwives, enrolled nurses, enrolled 
midwives, and other associated 
personnel in each MENA country in 
2022 

Index https://data.worldbank.org/indicator/ 

 
Table 2. Summary statistics of the global OLS model. 

Variable Coefficient St. Error t- Statistic Probability VIF 

Intercept -11.6942 3.7859 -3.09 0.0060 – 

Population density 0.0011 0.0005 2.04 0.0551 1.195 

GDP per capita 0.8735 0.2166 4.03 0.0007 2.141 

Unemployment 0.1160 0.0424 2.73 0.0131 2.419 

Total vaccine doses 0.9623 0.1536 6.26 0.0000 1.306 

 
Table 3. Summary statistics of SLM and SEM models. 

Variable   Coefficient St. Error Z-score P-value 

SLM SEM SLM SEM SLM SEM SLM SEM 

Intercept -13.9003 8.9763 3.1607 3.0262 4.3979 2.9662 0.0000 0.0030 

Pop-density 0.0009 0.0012 0.0004 0.0004 2.2372 2.8864 0.0252 0.0038 

GDP per capita 0.8201 0.8114 0.1693 0.1509 4.8436 5.3756 0.0000 0.0000 

Unemployment 0.1261 0.1173 0.0333 0.0320 3.7811 3.6603 0.0001 0.0002 

Total vaccine doses 0.8446 0.8338 0.1244 0.1267 6.7854 6.5770 0.0000 0.0000 

Rho 0.3442 - 0.1379 - 2.496 - 0.0125 - 

Lambda - 0.4692 - 0.1815 - 2.585  0.0097 
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Table 4. Measures of goodness-of-fit for OLS, SEM, SLM, GWR, and MGWR in modeling COVID-19 incidence rate. 
Criterion OLS SEM SLM GWR MGWR 

R2 0.743 0.794 0.804 0.840 0.843 

AIC 73.54 72.14 70.06 58.82 `58.41 

RSS 18.26 14.63 13.95 11.38 11.22 

RSS= Residual sum of squares 

Fig. 1. Location of the study area. 

 

 

Fig. 2. Distribution of the dependent variable (COVID-19 incidence rate) across subnational boundaries 
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Fig. 3. The effects of %Population density (above) and GDP per capita (below) in describing COVID-19 incidence rates using GWR (right) and 
MGWR (left) models across the MENA region. 

 

 

Fig. 4. The effects of % Unemployment (above) and Total vaccine doses (below) in describing COVID-19 incidence rates using GWR (right) 
and MGWR (left) models across the MENA region. 
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Fig. 5. Spatial distribution of local R2 of GWR and MGWR models for COVID-19 incidence rate associated with the significant covariates 
across the MENA region. 

 
 


