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ABSTRACT The elastic scattering of heavy ions is studied with-
in the semiclassical framework. Analytical expressions are obta-
ined for the elastic scattering phase shifts due to the nuclear po-
tential using the one-turning-point Wentzel-Kramers-Brillouin
approximation. The analytical expressions yield good agreement
with respect to results obtained numerically through fully quantal
calculations.

ABSTRAK Sebaran kenyal ion berat dikaji di bawah rangka
separuhklasik. Ungkapan analitik dihasil untuk anjakan fasa seba-
ran kenyal daripada keupayaan nukleus dengan menggunakan
kirahampir satu-titik-beluk Wentzel-Kramers-Brillouin. Ungka-
pan analitik memberi keputusan yang bersetuju dengan kiraan
berangka kuantum mekanik.

(elastic scattering, heavy—ion collisions)

INTRODUCTION

The collisions of heavy ions, i.e. ions whose masses
are heavier than tﬁag of an a - particle, have been stu-
died theoretically and experimentally for over thirty
years [1] in an effort to understand the structure of
nuclei and the interactions between them. Experi-
ments have shown that the interaction between heavy
ions can be approximated by a complex optical mo-
del potential. The imaginary part of this potential si-
mulates absorption, i.e. the loss of flux from the elas-
tic scattering channel into the inelastic and reaction
channels.

In elastic scattering, the quantities of interest are
the elastic scattering phase shifts 8 (/) which are ex-
pressed in terms of the partial waves I. These phase
shifts are extracted in a fully quantum mechanical
calculation by numerically solving the time-indepen-
dent Schrédinger equation to obtain the wavefunc-
tion that represents the relative motion of the heavy
ions. The wavefunction thus obtained and its first
derivative are then matched onto the corresponding
Coulomb functions at a suitably large radius where
the nuclear potentials become negligible. This proce-
dure is repeated over a large range of partial waves,

yielding the elastic scattering phase shifts. Although
the numerical evaluation of such phase shifts can now-
adays be routinely performed with available com-
puter codes, it is useful to develop analytical expres-
sions for the phase shifts so that the characteristics of
the interaction potential may be extracted.

THE ANALYTICAL NUCLEAR ELASTIC
SCATTERING PHASE SHIFTS

An analytical expression for the elastic scattering
phase shifts may be derived using the fact that the
wavelength associated with the relative motion of
heavy ions is generally much smaller than the dimen-
sions of the ion-ion interaction system. This permits
the use of a semiclassical description. One semiclas-
sical approach [2,3] is via the Wentzel-Kramers-Bril-
louin (WKB) approximation [4], which yields the
nuclear elastic scattering phase shift as the difference
between two integrals [5]. These integrals evaluate
the phase shift

() = [ k(rdr -], k (. (1)

Eq. (1) expresses the nuclear elastic phase shift in
terms of the difference in the absolute phase, calcula-
ted by the integral. Each integral results in a phase.
The first integral involves the radial wavenumber
k(r) which is given by

k(r) = {zu(zin)‘z [E - VN(I") - VC(r) —_ Vl(r)] } 12 (2)

In Eq. (2), W and E are respectively the reduced mass
and the kinetic energy for the heavy ion system, and
h is the Planck constant. The subscripts N, C and [
respectively denote the nuclear, Coulomb and the cen-
trifugal terms of the interaction potential. r, is the
turning point at which the wavenumber vanishes. The
second integral in Eq. (1) differs from the first in that
the nuclear term V, is set equal to zero.

The Coulomb potential felt by the heavy ions of



charge (mass) numbers Z, (A, ) and Z, (A, ) is given
by

ZZ
V=513 <R—>2]

V(N=ZZelr, r>R, 3)

where e is the electronic charge and R, is the range
of the Coulomb potential. The centrifugal potential is
described by

V(i =UKl+1) (%)2/ 2ur), C)

where the reduced mass of the heavy ions is given by
L=A A /(A +A)).

The nuclear potential comprises the real and ima-
ginary contributions such that

V(1) = V() + iW(). (%)

The specific shape for the nuclear potential used in
this study is that of Hill and Ford [6] which has the
form

V() == V,(2 2 explr- R / a;]}, r<R,

V(in=-V,exp[(r-R)/a,], r>=R; 6)
Here, V, , R, and a, are the well depth, range and
diffuseness parameters for the real nuclear poten-
tial. The imaginary nuclear potential W(r) possesses
the same form as Eq. (6) with W , R, and a, being
the corresponding parameters.

Numerical calculations using Eq. (1) have yielded
close agreement with fully quantal calculations [2,3]
when the integrals are evaluated in the complex r -
plane along a suitable integration path. Brink [7]
simplified the evaluation of Eq. (1) by making the
following approximations: (i) the nuclear potential
is regarded as being very weak compared with the over-
all potential, allowing the turning points r, and 7 to
become coincident; (ii) the relative motion of the
heavy ions is assumed to follow a straight path,
whereby the main contribution to Eq. (1) arises when
the ions are closest together. By using the above
approximations in Eq. (1), Brink [7] expressed the

real part of the nuclear elastic scattering phase shift
in terms of the perturbation formula

dr
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Here, v is the relative tangential velocity [8] of the
heavy ion system at the distance of closest approach,
d. The relative tangential velocity is obtained semi-
classically as

h 1
e (1431 (1D, ®)

while the distance of closest approach of the ions is
given by

d={n+In+ @+ k. ©

Here, m and x respectively denote the Sommerfeld
parameter and the asymptotic wavenumber. Eq. (7)
is valid for the partial waves whose distance of clo-
sest approach is larger than the dimensions of the
ion-ion system. K, is the modified Bessel function
of order unity [9]. The corresponding expression for
the imaginary nuclear elastic scattering phase shift is
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Egs. (7) and (10) imply that the real part of the nuclear
potential, V(r), is solely responsible for the real nuclear
elastic scattering phase shift. Similarly, the imaginary
part of the nuclear potential alone generates the ima-
ginary nuclear elastic scattering phase shifts, giving
rise to absorption. This is a consequence of the appro-
ximations made by Brink [7].

In this paper, we demonstrate that if the use of
the approximation r, = r.. is avoided, the real and
the imaginary parts of the nuclear potential will both
contribute to the scattering as well as to the absorp-
tion in the elastic scattering process. We follow the
prescription of Brink and Satchler [10] who trans-
form the range coordinate r(s) according to

V() + V(1) + V() = VL) + Vs), (11)
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so that k(r) = k(s). In this manner, the elastic scat-
tering phase shift (containing both the real and the
imaginary parts) can be expressed [10] as

8() = W) [} [r(s) ~ ]

ds
[VC (S) + Vl (S)] kc(s) (12)
In Eq. (11), the prime indicates the derivative with
respect to s. If a Taylor expansion is performed on
the potential terms up to first order, an approxima-
tion to the [ r(s) - s ] term is obtained. This results in
the elastic scattering phase shift being expressed as

8 = ey 17 Vi) (1= i)/
d.
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A comparison between eqs. (13) and (7) indicates
that eq. (13) contains an additional term which in-
volves the ratio of the derivatives of the potentials.
This factor includes, to first order, the effect of allow-
ing r, to differ from r_.. An analytical expression for
the elastic scattering phase shift may be obtained
from Eq. (13) if it is observed that the the main con-
tribution of the ratio of derivatives-to the integral
arises when s = r%, Thus, the expressions for the real
and the imaginary parts of the elastic scattering phase
shift may be written as

8 (D) =7,(d) & (D) +1,(d) & (D (14a)
8D =7,(d & () +v,(d) & O. (14b)

Here, the multiplicative factors 7y are functions of the
distance of closest approach d and are defined as
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Eqs. (14) and (15) are valid when the distance of clo-
sest approach exceeds the smaller of the two radii R,
and R,. In Eq. (15),

(Vo) =V +V/ + V)2 + (W)™ (16)

o)
COMPARISON WITH NUMERICAL
COMPUTATIONS

A comparison is made of the elastic scattering phase
shifts obtained using Eqs. (7), (10) and (14a,b) with
the phase shifts obtained via a fully quantum mecha-
nical calculation for the elastic scattering of '*O and
2%Pb at 192 MeV incident laboratory energy. The
nuclear potential parameters V, = 40 MeV , W,=35
MeV, R,=R,=R.=10.35fm, a,=a,=0.634 fm, were
obtained from Ball ez al. [11]. Fig. 1 shows the real
part of the elastic scattering phase shift versus par-
tial wave, while Fig. 2 displays the variation of the
imaginary part of the phase shift. Both figures show
that the analytical formula of Brink [7], i.e. Egs. (7)
and (10), agree closely with the numerical results for
partial waves greater than 110. This illustrates that
the approximations of Brink [7] are valid at suffi-
ciently large values of partial wave. On the other
hand, at partial waves between 90 and 110, the pre-
dictions of Egs. (7) and (10) deviate substantially
from the numerical results. However, the use of Egs.
(14a,b) result in a significant improvement in this
range of partial waves. This implies that the approxi-
mation r, = r, becomes invalid in this region. For par-
tial waves less than 90, both sets of analytical for-
mulas become invalid as the distance of closest ap-
proach is less than the radius of the heavy ion system
and the nuclear potential can no longer be treated
perturbatively.

CONCLUSION

In this paper, analytical expressions for the real and
imaginary parts of the elastic scattering phase shifts
were developed under less restrictive approxima-
tions than those considered by Brink [7]. These ex-
pressions were shown to remain valid over a broader
range of partial waves, especially in the region where
the heavy ions just begin to overlap. In addition,
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Figure 1. The real part of the elastic scattering phase shift versus
partial wave.

these expressionE"‘-:~,,.,show that the real and the imagi-
nary parts of the optical model potential contribute
toward both the scattering as well as the absorptive
parts of the elastic scattering phase shifts.
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