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ABSTRACT Indirect CP violation arising from particle-anti-
particle mixing is calculated from the box diagrams in the
Standard Model for K°-K°, B°—B° and B°-B° systems. The CP
violation parameter for each of the systems is shown to be clo-
sely related to the relative phases of the Kobayashi-Maskawa
matrix elements.

ABSTRAK Perlanggaran CP taklangsung yang berhasil dari
percampuran zarah-antizarah dikira dari rajah-rajah kotak di
dalam Model Piawai untuk sistem-sistem K°—K°, B°-B° dan
B°-B2. Parameter perlanggaran CP bagi setiap sistem itu ditunjuk-
kan berhubung rapat dengan fasa-fasa relatif di antara unsur-

unsur matriks Kobayashi-Maskawa.

(CP violation, particle-antiparticle mixing, Standard Model,
Kobayashi-Maskawa matrix)

INTRODUCTION

Large particle-antiparticle mixing is observed in

°~K°, B°-B° and B°-B° systems. In the case of K°—K°
system, such a mixing gives rise to two distinct
mass eigenstates, I"Ggs and K¢, with decay lifetimes of
0.89310°s and 5.1710® s respectively, and a mass
difference of [1]

Am(K)=m(K,)- m(Ks)=351x10""Mev (1)

Mixing in the B°-B° system is measured by the
mixing parameter x(B) [1]

X(B)=T(B - pw X)T(B — ptX)
=0.156 £0.024 2

The two mass eigenstates, B;, and B}, have a mass
difference of [1]

Am(B) = (3.4 £ 0.4)MeV (3)
but do not have noticeably distinct decay lifetimes.

The B°-B° system is also observed to have large
mixing, with a mixing parameter of [1]

x(B,)=0.62+0.13 4

The two mass eigenstates arising from mixing have
a mass difference of [1]

Am(B;)>12x10 7 MeV (5)

but, again, do not differ noticeably in the lifetimes.

Within the Standard Model, particle-antiparticle
mixing arises from higher order weak interactions,
the main contributions of which come from the box
diagrams of Fig.1 [2]. Depicted in Fig.1 are the
Feynman diagrams that give rise to K°-K° mixing.
Feynman diagrams that contribute to B°-B° mixing
and B3-B° mixing are obtained by replacing respec-
tively the external s-quark and d-quark by the b-
quark. The internal quark lines, i and j, can be a u-, c- or
t-quark.
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Figure 1. Box diagrams within the Standard Model that give rise
to K°~K° mixing. The internal quark lines i, j, can be a u, ¢ or ¢
quark. B°-B° (B°-BY) mixing is described by similar diagrams
with the external s (d} quark lines replaced by b quark.

Weak interactions of the quarks are described, in
the Standard Model, by the following Lagrangian:

: d
L ary = 2= (@, LV s | W,
(quark) LCE )Y s|\W, +cc. (6
V2 b

where V is the Kobayashi-Maskawa (K-M) mixing
matrix [3]. The magnitudes of the K-M matrix ele-
ments are approximately given by

( 1 022 0.003)
Vi~lo22 1 o004 ¢)
0.01 0.04 1 J



For three families of quarks, the K-M matrix con-
tains a complex phase which gives rise to CP viola-
tion effects in a natural way. Because of this complex
phase, the box diagrams of Fig.1 provide a definite
connection between particle-antiparticle mixing and
CP violation in such a system, the so-called indirect
CP violation.

In this paper, I shall exploit the box diagrams to
derive definite relationship between relative phase
among the different K-M matrix on the one-hand,
and the CP violation parameter on the other.

DESCRIPTION OF CP VIOLATION

In this section, I shall make specific reference to
K°—K° mixing as a generic case for the three particle-
antiparticle systems. The box diagrams of Fig.1 give
rise to AS = 2 effective Hamiltonian J{ (AS = 2), and
hence to off-diagonal element of the K°-K° mass
matrix

(k°|H(as=2)

Eo) =My, il /2 (8)

where M, and I'j, are respectively the dipersive and
absorptive parts of the off-diagonal element of the
mass matrix.

Diagonalizing ‘the mass matrix gives two distinct
mass eigenstates, which can be written in the follow-
ing form:

K, ) =201 +eP)I2 [(1 +&) | KW+ (1 -&)K) ()

where ¢ is the indirect CP violation parameter.
As CP violation is a small effect, we have

ImM ,<<ReM,,, ImI', << Rel,,
ImlC, << ImM , (10)

This greatly simplifies the expressions for K,—K;
mass difference Am, their decay rate difference AL,
and the indirect CP violation parameter €:

Am =ReM,, (11)

AT = 2ReT (12)
 ImM,-ilmT,/2

e~ (i2) (13)

ReM,—iReTl,,/2
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In the next section, I shall give the explicit result
for the dispersive part, M, of the off-diagonal mass
matrix element from the box diagrams. The absorp-
tive part, I',, will be deduced from a knowledge of
AT and Am.

EXPLICIT RESULT FROM
THE BOX DIAGRAMS

The calculation of M,, from the box diagrams is
straightforward. A detailed calculation gives

Ay = E%’ww (ME(x,)+ 2B (x,) + RE(x,)
PR E (%o %e)+ MAE (6% ) + MM E(xe, )}
(14)
where A, = V; V; , x,= m} /M3, and
Qas=2 - dy,Lsdy"Ls (15)

The functions E(x), E(x, x) are explicitly given by [4]

_ WPmx A5 -1x+4)

E(x)=—2(x_l)3 BT (16)
x? -8x +4)inx

ot

+(x o x') S S—
* * 4(x - 1)(X' - 1) (17)

These functions have the following properties:

E(x) = —x for<<1, (18)
E(x,x)=x"Inx'lx, forx’<<x<<1
=~x'lnx, forx'<<x=1 19)

Taking the u, ¢ and t quark masses as
m_=0.0056 GeV, m_=135GeV, m =174 GeV (20)

gives



E(x,)= -487 x10~°, E(x,) =-283x107%
E()=+215
E(x,, % )=-535x10"%, E(x,, x, )= -9.33x107°,

E(x;,x )= -231x107 1)

In the subsequent sections, K°~K°, B°-B° and B>-B?
mixings will be considered separately.

o_j° SYSTEM
For the K°-K° system, we have

AT = -2Am (22)

to within 5% accuracy. The indirect CP violation pa-
rameter € is then given by

e Im M,

g~ ————
2VZRe M, (23)

Assuming that M, is due entirely to the box
diagrams, we can then use Eq.(14) to give an esti-
mate of €. Now for K°-K° system,

|22 A

~0.05, |A%}~005 |M~16x107  (24)

so that

A2 E(x )| ~ 1.4 x 10° (25)
is the dominant term in Eq.(14). The other terms are
at best of order 107. the ratio of Im M, to Re M, is
then given purely by the K-M matrix elements:

ImM, ImAZz Im(V,V)
= = =tan2¢, (26)
ReM, RelAl Re(V,V.)

where ¢ is the phase of V_ relative to V_,. This gives
the indirect CP violation parameter £(K) for K°-K°
system as

1
ek |= Fyz e 20 27)
Since
ey |~ (2.266 £0.017) x 103 (28)
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we find
tan ¢ = 3.2 x 107 (29)
B"—E" SYSTEM
For the B°-B° system,
AT << Am (30)

so that the analogous CP violation parameter €(B)
due to mixing is given by

e (B) =5 (mM,/Re M,)) 31)
where M, here denotes the dispensive part of the
off-diagonal B°-B° mass matrix. The effective Ha-
miltonian for B°-B° mixing is given by an expres-
sion similar to Eq.(14). But here A, = V;V,, and

0452 = 3y, Lbdy*Lb (32)

For the B°-B° system, we have

|22~ 10, |22~ 104 | R~ 104, (33)
so that

2 E(x)|~22x 10 (34)

is the dominant contribution. In comparison, the other
terms are of order 107 or smaller. This gives

1 Im(V, V)

1
=— =—tan 2 ¢’
2 Re(V, V,) \

2

(35)

where ¢’ is the phase of V, relative to V..
B>-B? SYSTEM

For the B°-B° system, as in the B°-B° system, we have
AI'<< Am, so that the CP violation parameter &(B))
is also given by Eq.(31). The B°-B° mixing is given by
Eq.(14) but ith A, = V'V, and an expression for the
operator (§ analogous to Eq.(32).

For this system, we have

~1.6x107 (36)

AL~ 4.4 x 107, | AL~ 1.6 x 1073, |A2



Again the term

A2 E(x)|~34x10° (37

is dominant in contribution. Other terms are much
smaller, of order 10? or less. The CP violation para-
meter is thus given by

1 Im(V: V) 1
(ts tb) _ anzq)//

= - (38)
2 Re(V' V) 2

|e(B)

where ¢ is the phase of V,, relative to V.
CONCLUSION

The dispersive part of M, of the off-diagonal particle-
antiparticle mass matrix is calculated from the box
diagrams of Fig.1 within the framework of the Stan-
dard Model. A knowledge of the ratio AT7Am allows
us to express the indirect CP violation parameter €
arising from such a particle-antiparticle mixing in
terms of the relative phases of the K-M matrix ele-
ments.

In the calculation, I have assumed that the box
diagrams provide the dominant contributions to par-

5,
,
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ticle-antiparticle mixing. This is a sound assumption
for B°—B° and B°-B° systems [5]. But for the Ko-K°
system, contributions from the box diagrams, the
so-called short-distance contributions, are not the
only important contributions. Long-distance contri-
butions may be important [5]. Taking into account
the long-distance contributions to M,,, which are
predominantly real, Eq.(27) for the K°—K° system is
replaced by

) 1 tan2¢ (39)
\ ) N2 1+r
where

r= ReM’fZ/ReM‘;’2 (40)

Here Id and sd stand for long-distance and short-
distance contributions respectively. Calculation of r
is, however, very much model dependent.
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