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ABSTRACT The Courant Friedrichs-Levy stability condition
for Arakawa’s D lattice has been derived. The stability condition
for this particular grid is less restrictive than the stability condi-
tion for grids A and C.

ABSTRAK * Keadaan kemantapan Courant Friendrichs-Levy
telah ditentukan. Keadaan kemantapan ini adalah kurang terhad
berbanding keadaan kemantapan untuk grid A dan C.

INTRODUCTION

Measurements in the ocean are difficult and, quite
often, expensive to obtain. Although oceanic data are
usually scattered distinctive interpretation of oceanic
data is possible. The shallow water model is probably
the most powerful tool available to physical oceano-
graphers [1]. In effect, the shallow water model usu-
ally provides answers to idealized situations, and also
simulates the ocean’s response to atmospheric wind
forcing. Five different* spatial arrangements of varia-
bles for the shallow water equations, are generally
considered [2]. We will be concern only with Ara-
kawa’s D lattice (Fig. 1). Our aim is to gain some
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Fig. 1. Representation of variables in Arakawa’s D lattice.
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understanding about the numerical stability condi-
tion for the shallow water equations of Arakawa’s D
grid [3]. For this purpose, following [4], the stability
condition for the one-dimensional gravity wave and
the inertial-gravity wave will be considered. For
these two types of waves, an analytical study to de-
termine the Courant-Friedrichs-Levy stability condi-
tion will be conducted. The technique being used is
the one developed by von Neumann [5]. A theore-
tical analysis, for both the gravity and inertial-gravity
waves, shows that the results using lattice D, are
very similar to the results of the unstaggered grid. [2].
Our analysis shows that the stability condition for the
D lattice is less restrictive than the stability condi-
tion for all other grids. Therefore, there is an advan-
tage for the use of this particular grid. In particular,
a larger time step for both a given (spatial) grid resolu-
tion and a given mean depth of the ocean could be
employed.

THE PROBLEM

The general stability condition of the finite differencing
scheme is determined by the general condition:

CAt/Ax<O(1),

where C is the velocity of the gravity waves, i. e., the
fastest traveling waves.

STABILITY ANALYSIS

A. ANALYSIS FOR THE ONE - DIMENSIONAL
GRAVITY WAVE

Consider the following set of partial differential equa-
tions:

du/dt=-goh/dx

oh/dt=-Hou/9dx )



where g represents the earth’s gravity; H, the mean

sea level depth; u and v, the velocity components in

the x (east - west) and y (north - south) directions,

respectively; and h, the free surface elevation.
Inusing a centered in space and time finite difference

scheme yields:
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where v is equal to A t/ A x; the superscript 7, denotes
the time level; the subscripts (m,l), the mesh of dis-
cretes grid points in the east-west and north-south
directions, respectively, and A t, the time step incre-
ment.

It is convenient to define C>=g H, 8 (=L Ax), and
6 (=V Ay), where p and v are east-west and north-
south wavenumbers, respectively. Assume that R = (u,
v, h). Let:

R, = R explipmAx) exp(ividy). (3
Recall that: ‘ _

sin A=(exp(iA)—exp(-1A))/(21),
cos A=(exp(iA) + exp(-iA)/(2), 4)

Taking into consideration the set of equations (4),
upon substitution of equation (3) into the set of equa-
tions (2), it may be obtained:

u, =u —-yg(isin2 Ocosc) h
h =h"_1—yH(isin26cos<5)un ®)

n+1

It is convenient to define an amplification factor, K,
such that:

Rn+2 = K Rn (6)

In doing so, equation (5) can then be rewritten as:
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The operators L , L, and L, are defined as:

= K2 - K2
igysin20cosco
= iHysin2 6 cos C. ®
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The homogeneous set of equations (7) is solved by
letting:

L?-L, L, =0. ©)
A second order equation for K is obtained. Namely:
K2-2(1-(Cysin26cos6)*/2) K+1=0 (10
The two complex conjugate solutions are:

K+=F+i(1—FZ)”2
K =F-i(1-F) 2, (11
where:

F=1-(Cysin206cosc)?/2. (12)

To have a stable (neutral) condition the absolute va-
lue of K should be less (equal) than (to) one. Other-
wise, the finite difference scheme is unstable. Multi-
plying the two solutions, yields:

|K|?= K, K =1 (13)

Therefore, if the term under the radical sign, 1 - F?2
is positive, then the amplification factor will be equal
to one. Thus, our stability analysis shows that the
chosen finite difference scheme is neutral. This in-
stance will hold true if, and only if:

Cysin20coso<2'? (14)

Recall the definition of Y. Due to the fact that the
absolute value of sines and cosines are less or equal
than unity, it is inferred:

CAt/Ax <22 (15)

which is the typical C-F-L condition for computa-
tional stability. This stability condition, for the D lat-
tice, is less restrictive than the stability condition for
all other lattices.

B. ANALYSIS FOR THE INERTIAL-GRAVITY

WAVE

Consider the following set of partial differential
equations:
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du/dt=fv—-gdoh/adx
ov/ot=-fu
oh/dt=-Hou/dx, (16)
where f, the Coriolis parameter, has a typical value
of less (or equal) than 10 sec’! at Malaysian latitudes.

The same finite differencing scheme as for the
gravity wave, and taking into consideration the set of
equations ( 4 ), yields:

u, =u +05Atfcos6coscv —igysin26cosch,

v n+l = Vn-l

-05Atf cochos(}'un

h ,=h —-iHysin26cosch (17

The set of equations (17) may then be rewritten as:

Lu-L,v+L h =0
Liv+L,u=0
L h +Lu =0, (18)
where L ,=AtfcosOcosc/2.

Following the same procedure, as in the previous
case, yields:

K = (1 - (Atfcos 8 cos 6/2.7
—(Cysin2 @ cos 0)?/2)
Ti{l~[1-(Atfcos 0 cosc/2.)

—(Cysin 2 6 cos 0) /2]}2 (19)

If the term under the radical sign is positive, the

stability analysis shows that the absolute value of the

amplification factor is equal to one. Thus, we will

have a neutral stability condition. This will require
that:
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(Atf cos @ cos 0./2)?
+(Cysin20cos 6)?/2 <1 20)
Due to the fact that the absolute value of sines
and cosines are less or equal to unity, yields:

CAt/Ax<{2[1-(fAt/2)]}"” 21

The same result as in the previous case is obtai-
ned. Namely, that the stability condition, for the iner-
tial-gravity waves, for the D grid, is less restrictive
than for all other lattices.

CONCLUSION

Our analysis shows that the stability condition for
the D grid for the fastest traveling wave, is double
the value than for the other four grids. A larger time
step, for a given (spatial) resolution and a given
mean depth of the ocean, may be used.
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