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ABSTRACT The cluster expansion theory is used to explain
ternary mixed electroytes having a common ion. The mixing
coefficients have been studied and their inter relationships are
reported. Their possible applications to the calculation of acti-
vity coefficients and osmotic coefficients are shown. Higher-
order limiting laws are also discussed.

ABSTRAK Teori perkembangan gugusan telah digunakan
untuk menjelaskan elektrolit campuran ternari yang mempunyai
satu ion biasa. Pekali campuran telah disiasat dan perhubungan
antara dilapurkan. Kegunaannya yang mungkin untuk perkiraan
pekali aktiviti dan pekali osmotik ditunjukkan. Peraturan tahap
tinggi juga dibincangkan.

(mixing coefficients, ternary mixed electroytes)

INTRODUCTION

Ternary mixed electrolytes have been studied using
the Harned equations[1-5] and the Pitzer equations
[6]. In all these studies, the number of parameters to be
optimized is necessarily larger than that used for a
binary mixture and this implies that more experi-
mental data are required. Obviously, this will intro-
duce problems, both theoretically and experimen-
tally. It is therefore desirable to study the mixing
coefficients of ternary mixtures and thus to find a
way to reduce the number of optimizing parameters.
This is especially significant when the number of
electrolytes in a mixture keeps increasing. Given a
fixed order of an equation, one easy way out is, of
course, to neglect those parameters which we believe
are negligible; this approach is, however, not as acc-
eptable and unambiguous as to reduce the number
of parameters from the reformulation of the theory
itself. In this article, we will show that the interac-
tions of three electrolytes can be reduced to two
binary interaction portions and one ternary interac-
tion part; since the latter consists of the same cluster
integrals and possesses similar expressions as the
binary interactions, we would expect that the mixing
coefficients in a ternary mixture are essentially not
much different from those for binary mixtures. Fur-
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thermore, similar to the treatment of a binary mix-
ture where the activity coefficients can be separated
into a single electrolyte portion and a binary interac-
tion part, for a ternary mixture, the two binary por-
tions can also be evaluated separately and solely from
the data of binary mixtures; only the ternary inter-
action part needs to be determined from the data of
ternary mixtures. More importantly, this procedure
can be extended to any number of electrolytes in a
mixture. The above observations deductions are
based on the results of the Cluster expansion theory
which was first developed by McMillan and
Mayer[7] and later generalized by Friedman[8,9].

It is well known that the applications of the Cluster
expansion method to the changes of excess Helm-
holtz free energy and osmotic coefficients for a
binary mixed electrolytes can be done directly[10]
whereas only an indirect method is possible for the
calculation of the activity coefficients[11]. The ther-
modynamics of their mixing coefficients are also
known[8,12,13]. The calculation of the direct correla-
tion functions can be done from the approximation
methods such as the linearized Debye-Huckel app-
roximation, the Percus-Yevick (PY) approximation,
the mean spherical approximation, and the hypernet-
ted chain (HNC) approximation[8,9]. However, it is
sometimes simpler and more convenient to use
semi-empirical methods such as the Scatchard
method[14,15], Pitzer’s method[16-19], the Higher-
order limiting law method[20,21], and recent me-
thods of Lim[22,23]. The thermodynamics of the
mixing coefficients in these methods have also been
studied([8,12,13,24]. In this paper, the theory for ter-
nary mixed electrolytes with a common ion will be
formulated and the thermodynamics of the mixing
coefficients are shown.

GENERAL THEORY
Consider a mixture of a solvent w and s electrolytes

A,B,C,..,S. Let 1,2, .., s be the positive ions of the
electrolytes and s+1 their common negative ions,



the corresponding charges being z,, z,, ..., z, for
the positive ions and z_,, for negative ion. v, *and v~
are the numbers of positive and negative ions of
electrolyte L withv, =v,*+v,~. We may further define
z, = lzz, 2,2, = 12,2, V2, i i Zg= |ZSZS+1V2-
For a ternary mixture of three electrolytes A, B and
C, we have four ions 1, 2, 3 and 4, the change in ex-
cess molar Helmholtz free energy upon the mixing
at constant ionic strength I, temperature T and vol-

ume V of 1 litre can then be written as[8,10]
(1) A A*RTV = -(As, + A s, +As, + )
| 2 N k ) k
= Vp(1- ¥l Z g5,yy" +Yc(1-YIF 2 ga¥c

M+l
+P X GPUypye

m,n=] M0

where y, is the fractional ionic strength of B and.

so forth, and y, +y, +y.=1. The superscript BC of
the mixing coefficients G_BC will be omitted thro-
ughout this discussion. If the A_A®™ for the mixing of
the binary mixture A + B is represented by[8,12,13,21]

M-1
(2) A AWRTV = y,(1-y)P X g/® (1-2y,)"

then the g, ceefficients are related to g A%
M1 L""-,;
3) g = T

The g, coefficients in the binary mixture A + C are
similarly related.

The cluster expansion terms in eq (1) can be ex-
pressed as

As, = -yp(L- yB)IszO(Z) -yl - yC)PSco(Z)
- P(s, 2ypy o)
@) A5, = Yol - Y5, + Y55, ®) - Vel - YOP
(Sco(a) + ycsc1(3)) B yBycp(S11(3) + yBSZIG)
Y8
As, = -yl - yB)12 [530(4) + yBSB1(4) + szsB2(4)]

- - 2 4 “ 2¢ 4

yC(1 yC)I [SCO + yCSCI + yC SC2 ]

- “ “) 2¢ B “4)
VoYL [8,, 9 + 758, +¥578,, Y + Y8y,

20 (4 ()
+Y8,0 + VY Sy ]
etc., so that
®) 8, =

k)
Bn

, (n20)

k=n+2
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— x)
B = Sl (n20)
G = X s® | (mnx1)
mn k=m+n mn

The summation limit in eq (5) equals to the highest
order of s_used; e.g., this number is 4 in our pre-
sent expansion. The corresponding cluster integrals
are

Spo” = (- 2,)’X,

Scom = (Zl - Z3)2X2

$,@ = -2z, - z)(z, - 2)X,

552 = z,- 2,22 + 2,2, + 2))
+(z,+2,+2)(z +2,+ 2z,)1X,

sp, P = (2, - 2z, + 2, + )X,

s = -z, - 21z + 22, +2))
+(z,+2,+ z,)(z, +2,+ 2z,)1X,

5o = (z,-2,)%(z, + 2, + 2)X,

5,0 = {(z2+zz,+2)[222,+ 22,2,
-22,(z,-2,) - 22,(2, - 2,)]
+2z,-2,)(z,-2)(Z + z,)2z, +z,
+2z,+ 2z2,)}X,

(6) 5,@ = -(z,-2,)%(z,-2,)32,+ 22, + 2, + 32 DX,
5,0 = -z, - 2.z, - 2,)(3z, + Z, + 2z, + 3z,)X,
e = {+(z,-2)(z, +2,+22,) + 4(z, + z,)?

+2(z, + 2,)(z, + 2)1}X,

SB1(4) = {'(Zl - Z2)3[(Zl +z,+ 224) + 2(Z1 + Z4)] }X4

s = (z,-2)X,

s = {Hz,-2)(z, + 2, + 22, + 4(z, +2,)°
+ 2z, +2,)(z, + 2]} X,

o @ = {-z,- 20z, + 2, + 22) + 2(z, + 2)]}X,

Sc2(4) = (z- Z3)4X4

s, @ = -12(z,+2)%(z,- 2,)(z, -Z,)X,

5, @ = 12(z, - 2,4z, - 2,)(z, + 2,)X,

5.9 = 120z, - 2z, -2)(, +2)X,

5,0 = -6z, - 2,)(z, - 2)°X,

5,0 = Az, -2z, - 2)(z, - 2" - 32,(2, + 2,
+z)IX,

S0 = Az, -2)(2, - 2)l(z, - 2 - 32,02, + 7,
+z,)]1X,

with[25,8]

X, =3A2Inl

() X, = 2(127A ) I'* | Aad{ij)

X, = (12nA P 1” | (2++ ®)d{ijk}
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A,is the well known Debye-Huckel limiting slope[17].

It was shown by Friedman[10] that the difference
in thermodynamic coefficients in the Lewis-Randall
and McMillan-Mayer systems are negligible at low
concentrations and modest at moderate concentra-
tions. In the semi-empirical fitting these differences
may not be significant as they can be absorbed in
the procedure of the optimization of parameters. There-
fore, for convenience, we will neglect this conver-
sion factor between the Lewis-Randall and the Mc-
Millan-Mayer system[26], and use the Gibbs free
energy changes A _G* and the Helmholtz free
energy changes A A* interchangeably. If we define
Y, to be the mean activity coefficient of electrolyte
L in the mixture, and

) 8%Wp Yo - Yo D = RT/z)Iny,
then the excess free energy G** can be written as

(9) MY Yoo s Yoo I) = A Gy, Vs vons D)

+ Z yL ex(SBL“ cL’ 6SL.’ I)

where 8 has a value of 1 if K =L, and zero other-
wise, and

(10) Gy, Yoo s Yo D = G %Yy Yoo s D)
S
+1ZX XY Yoy ey Voo I
Z V.8 (Vs Yor = Yo D

where G, is the excess Gibbs free energy for the
solvent w. For a ternary mixture, A G** may be
given by eq (1) while g * may be defined by

In10RT

Zy

(I1a) g, *(y,y.D = g,%0,0,D -

M+1

{ E‘I (V5 Apy + YA

M+l

X ALY

In10RT
z

B

(11b) g, *(y,y.D = g,%(1,0,) -

M+1

{ Ex (YBgy +¥,B,y)
M+1
+ Z anyAmnd}

m, n=1

In10RT
(1le) g YYD = g0,1,]) - =
M+1 Ck
{ k2=1 (yBkCBk + yA CAk)

M+l

+ mznl CmnyA an}
From equating the relations (9) and (10), we may
generalize the procedure used by Friedman!? to
obtain the general relationship between g ** and
A_G* as follows:

(12) gLex(yB’yC""’yS’D = gLex(SBL s 8CL""’ SSL’I)

dA_G* s
* ol =
8 -y, OA G*
I 9y,
-RTI KgA Y Dy,
(K#L)

where @, = ®, -® ,and

13 & =G, I)/RTI?

BL’ CL’ ’ SL?
= (1-9,1z,

with ¢,° being the osmotic coefficient for the pure
electrolyte L.
Substituting eq (1) into eq (12), we have

g,%(0,0,) + RTI
{-(yBcDBA + ycq)CA)

+1,5K)y ']

(142)  g,*(Yg:¥osD

M+1 B K
+ k§l [f 2Ky,

M+1
+ X [f,(mn)y,"y "}

(14b)  g,"(YpyoD = g™(1,0,) + RTH{-(y, D,
Y @cp) + Z [£,2K)y,* +
Gy, + £y +m§=1
[f (m,n) + (m + )G

m+1,n]

YY)




(14c) gyl = g20,LD + RTH{-(y,@,c
L@ + T [R0Y
+ G, + £y + mMle
[f (mn) + (+1)G,,.,]
Ys"Yc'}

where

flL(k) = I(g’L,kJ - g’[_,yk.z) + (2 - k)(gL,k-l - gL,k-2)

(15) f(mn) = IG’ +(@2-m- nG,_
£k = I(g"y,, - g )t k+1g,

+(1-2K)g, , +(Kk-2)g, .,

After some manipulation of eq (14), we obtain the
relationship between those mixing coefficients
which are defined in eqgs (1) and (11):

_1n10

(16a) A, = 03,0,

(16b) 1an0 = I (mn)

(16e) -0 B, = F20) 19,3,

asd) -0 p - ERK) - 10,3,

ZB

(162) I“Zm = P¥(m,n)

where

(172) FPk) = (~1)“{-Ik(gB_k_1-gB,k_2) +
M+1
%{ [fSB(k)(lk) - I(gBi - gB,i—l)
G+ D)1

(176) EP(K) = 2 + F( + FK + £50)
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(17¢) F(mn) = IG,  + F 3(m,n) + F,(m,n)
+ F,(mn) + F,(m,n)
with
M+l
(18) F =IG, +(D* % (PG,
+1G,)(,.)
k-2 M+l s
(18b) Fk) = (D X X D)
i=0  j=max(l,i)
{fGk-D) + 1[G+ DG,y i
- (k- DG, ]}
(18¢) k) = £k -Ik(ge,, - 8cxa)
(18d) Pk = I2(g’B’k_1 - g’Byk_z) + ZI(gB’k_1 - gB,k_Z)
(18e) f(mn)= PG’  +2IG
and
m+n: Ml fB(k)
(19&) F B(m n) = I( 1) k—% 2 kmn +M+1-m-n
-+ 1)(gBk - gB,k-l)(Ck,n-l,m +
knm l) + le k.n- lm8+M+2—m-n]
min(M+1-m;n-1) M+!
(19) F(mm = XL = T fn-DC;,1™
i= j=i+m
min(M+2-m,n-1) M+l .
(19¢) Fmn =1 X T (D
- i=0 j=max(1,i+m-1)
(]+1)G|+ln| jim-1
min(M+1-m,n-2) M+l
(19d) F,(mn) =1 _?0 Z (- 1)‘*"“C'lnn g+
i= j=i+m

1) j+1n-i-1 (n 1)C}|n|]

Note that G, = G, = G = G, =0 while

(200 C, = kG- - k!
in which C, = = 0if any member of the set {i,j, k, i-

j-k}is negatlve Also,




0 if j is negative
1 if j is zero or positive.

ey 8, =1

Similar equations for C,,, C, and C_ coefficients

can be obtained from eqs (16c-16e) by interchan-

ging all the B and C, together with the changing of
all G, and G’ij into G; and G’ji.
Reverse relations can also be obtained from the
following relationships:
€X I J‘ y €X,

(22) A G (¥pyoD) =5{ o g (ypyD -
ey Dldy + [ 3P [g,5(/00 -
g,"(0.D1dy + | JPlg, (YD -
8,7y Dldy + [3€ [g(0y.D -
2Oy Dldy }-Ty, | 18,700 -

g,°(y,0Dldy -Iy. J (1) [g.0,y,D) -

g,7(0,y,Dldy
which gives
M+1 fL A
23) Ig, = = MO w Py @ -pc;
A

k=n+:l k+1 ZL
n=0,1,.,.M)

A < A
(23b) ZIGmn = ln 10{ m,n-1 _ M,m,n-1 + m-1,n _ M,n,m-l]’
n

z A nzc mz, mz,

(m,n=1,2,..,. M+1)

Here, we have replaced A, and A, by A_ and A_,
and defined

(24a) f, = = f-Mmn)+1ft, 5

+M+1-m-n
with

min(M+1-m,n-1) M+l

(24b) f{Mmpn)= 3 Y L C (-1)+n

i=0 jei¢m T

M+l

(24C) f‘Lan = k=§+n LAkamn(-l)m+n

except when n = 0, in which case we define £ as
follows

(25a) 8, , = B+, +M,m)
@sb) f, = C, +f, +f°(Mm)
with

min(M+1k-1) M+l

(25¢) fMK) = X )

i=max(0,k-M-1) j=max(l1,i)

L(DED)

M+l )
@25d) f, = Ek L, )CDF

Note that L =B or C.

Now we can turn to the equations for the osmo-
tic coefficient ¢. Similar to the treatment for the ac-
tivity coefficients, we can equate the right hand sides
of eqs (9) and (10), and take note of eq (12) and the
following relationship:

(26)  G*(8y, 8y o 8,D) - 1,58, By vos BpD)
=RTE @,

then we can obtain

€X

S
+ X RTIy ®

a m
@n G =40 -1—5—+ T y

or equivalently the following equation:

A G & y, AG* 9AG™
28) DY F($-00)—L =-m 4
(28) RT 2% z,  RTI  RTdI

Substituting eq (1) into eq.(28) we find, for a ter-
nary mixture,

C Yo M-1
@) T 0-09-F=yd-yl T

M-1
(g, + 8)Ys5 + Y1 -y I z
M+l

(Ig'Ck + ng)ka +1 X

m,n=1
(IGlmn + Gmn)mend
If we define
M-1
30 A G ™ =-RTP{y,(1-yp) Eo A

M1 M+l
Ye(1-¥0) 1()51 We Yo+ m§=1 W5 Y}



then one can readily see from eq (28) or eq (29) that

_aIG,,

_ dlg,,
ol

ol ’

_ olg.,
ol ’

ka

(€29 o mn

Using a primitive model with zero core diameter,
we can compute the approximate g, 8co and G,
coefficients as follows:

8= N °B, + n,’B,, +n,/h’B,, - nm,B,+
2nn,hB,, - n,nB,,
(32) gg= M/ B, +NBy+ B, - 2nn,B,, +
nm AH'B, - 2n,n,B,,
G, =-2n’B,- 2nhh’B,, +2nn,B,, +
2nn,B,;-2nn ,h+h)B,, - 2n,nB,, +
2n,n,h'B,, -2n,n hB,,

with([8,16]

(33) Bij f(zizj/4I)Jij =12 | N [(1+kij)exp(qij)
-1+q; + qzij/2)]41tr2dr

where kij = 0 for the above mentioned model, and

(34) m.= 2/z(z-z) i=12,3)
3 2Q2z,-2,-2,) _ 2
N oz S 4@
(Z3 - 24)(Z2 - Zl) ’r_ (Zg - Z4)(Z3 - Z])

T )21, -2)  (g-2)02-7,-2)

For x <1, we have

11

35 Jx)=- X
p=3

xp—lpp—3
p!(p - 3)!

the constants Kp have been reported by Pitzer[16,17]up
to p = 6. However, by considering additional terms
in the expansions of the integrand, more accurate
values of K can be obtained. Our Kp values are cal-
culated from

(Inlx!l +K)

32

(36) K, =2C+Inm-B,
where C is the Euler constant, B, = 11/6, B, = 17/6,
B, = 203/60, B, = 681/180, B, = 21119/5145, B =
1064697/245760, B, = 76256503/16533720, B, =
4.8022233968, B,, = 4.9273543920. For x > 1, J(x)
can be evaluated numerically. Numerical calculation
of J(x) by Chebyshev approximations has also
been devised by Harvie[17,27]..

When k, is not zero, the method of evaluation of
J, has been described by Friedman[8]. We apparently
take excess care over the K values because this can
help to remove the unnecessary additional uncer-
tainty in deciding the negligibility of the higher-order
virial coefficients.

INDIRECT METHOOD OF FRIEDMAN

The equations derived in the preceeding section are
useful for direct computation or for fitting experi-
mental data. However, since the derivatives of ionic
concentrations with respect to ionic chemical poten-
tials are obtainable from the radial distribution func-
tions, the inverse of these derivatives results in the
derivatives of molecular chemical potentials with
respect to ionic strength and fractional ionic stren-
gths, Friedman has proposed an indirect method to
determine the mixing coefficients[9,11] of the activity
coefficients, and other mixing coefficients for the
derivative quantities. In this method, we have

3
37 I= ZC/n,
i=1
(38) C1 = nlIA ’ Cz = nzls ’ C3 = T‘3Ic’ C4
3
=- X ziCi/z4
i=1
4 C
39 p = El C = LZ;A I/z,
and®

JC,
@0 M, =(5)Ty = (€3, + CG,CYKT

LR
J

where

@) G,= [lg@ - N4ncdr




o e N D

W o

and g,(r) is the radial distribution function.
Noticing that
(42) g™ = (W - W Mvz

where the superscript id signifies ideal state, and de-
fining

g, = dg,*/dy and g ™ = dg /0], we compute all
the mixing coefficients from the following deriva-
tives with the use of the Mij values:

+

—VA—[CA -CA, - CA, ]

My = D 1593 25321 35213
M =-IVA+n1n2 [ A321 + A23 ]

AYB D nl n2

0., = _IVA+nln3 [ A213 + Aza ]
AYC D nl Tl3

(43) Wy = VB+ [-CA, + CA, - CALl
ID

Ivy;mm, A A

BY, D n, n,
Lo = IVBJ'ﬂmg [ 'A123 + A321]
BYC D ,nl ,n3
uCI = V ' [CIAZH C2A123 + C?Alz]
"D
Iv.nn, -A A
MCY — C 112 [ 123 + 213 ]
B D n, n,
H’CY - IVC+T'|1'I]3 [ AlZ + A213 ]
¢ D n, 3
ne = RTv, /I
. v v.Mn,h
ne = -RT[—2- + A—n‘*—]
B A Y,
v,t  v,mh
He = -RT[—2 + AT
c A yo
My = RTv /I

33

d vt Vs n 4h
Hy, = RT[2 - —E]
v, n,h’

id - _RT [__
l.;E'yc y ]

[¥]

Hd = RTv /I
. v.1n,h
I‘LC‘; = -RT]| _c 4 ]
B o
v.,: v, nh’
i = _RT c _'c'la
ucyc [ Ve 7
where 'y, = mg-nhy, -nhy,, and

44 D =MMM, +MMM, +MMM,
MMM, -M MM, - MMM,

A, = M]lez - M122

>
I

M11M33 - M132
A, = MM, - M232
Ay = M11M23 - M21M13

A, = M, M, - M, M,,

>
I

M33M12 - M13M23

For example, the mixing coefficients A, A, and
A, can be obtained from the following equatlon

46) g2, = (MY -l vz,
B B B

M+1 M+l
_ _ InlORT (% wom, + 3
‘A m,n=

mA_y.™y "}

We can first calculate g Ay Values at different y, and
Yo with the aid of eq (43), the A mixing coeffi-
cients can then be optimized using eq (46). Coeffi-
cients B, ,B.,,B_.C,, C,» C_ may be obtained in
a similar way. gBk, g, and G can then be com-
puted from eqs (23a) and (23b).

Although this method appears to be simple, the




actual calculation is, in fact, tedious and time con-
suming. Furthermore, the accuracy to a large extent
depends on the choice of the ionic pair potentials.
However, with rapid advances in computing techno-
logy, we believe this method has great potential.

DISCUSSION

One important advantage of our above formulation
is that in the calculation of the activity coefficients
of electrolyte A in the ternary mixture, we need to
compute or optimize only the mixing coefficients
G_, which characterize the interactions of A, B and
C, while the contributions from the part of binary
mixtures A + B and A + C can be predetermined. This
is because the mixing coefficients g, and g, are
known from the two binary mixtures. This advantage
is especially significant in semi-empirical fitting
methods because they will be less practical if too
many parameters are to be optimized. The above
remarks are, of course, equally valid in the computa-
tion of osmotic coefficients and other thermodyna-
mic functions.

In addition to the Debye-Huckel limiting law that
characterizes the limiting behaviour of a single electro-
lyte at infinite dilution, there are higher-order limiting
laws[8,10,11,1§f;28,30] that characterize electrolyte
mixtures. From equations 5-7, we see that

(47a) Limg, = sz® , Limg,, = s,
1-0

(47b) Limg, =s,®+s, @, Limg,, = 5o, + 5,
I-0 1-0

(47¢) Lim G, =s,?
1-0

(47d) LimG, =s,®+s,®, LimG, = s, P +s,@

I-0 1-0

where eqs.(47a) and (47b) are well-known limiting
laws for the binary mixtures[10,11,13,28] whereas
eqs (47¢c) and (47d) are additional ones for ternary
mixtures. However, they are valid for unsymmetri-
cal mixtures only, for symmetrical mixtures, they all
vanish. According to Friedman([8,13] we have

48) g, = g,,(0exp(6zA,I'?)

34

for binary mixing coefficients. A similar relationship
for ternary mixing coefficients G,, can also be pro-
posed:
49 G, = G,,(0)exp(6z,2,A,I'?)

We note that the ternary mixing coefficient G, has
a similar I-dependence as the binary mixing coeffi-
cient g, or g, but with opposite sign. Similarly, G,
and G, are equivalent to g, and g,. In common with
the Debye-Huckel limiting law, the higher-order
limiting laws are also independent to the details of
the short range ionic interactions but cannot be dedu-
ced from the laws of thermodynamics alone.

Since we need to optimize only the mixing coef-
ficients G_, the present equations are useful enough
to be incorporated into our Higher Order Limiting
Law All Mixing Coefficient method[23].

Finally, it is necessary to point out the advantage
of the use of our unsymmetrical equations of gr* .
Although one can express all the three g by a
single symmetrical equation together wiht the rota-
tion of the symbols A, B and C, our unsymmetrical
equations are prefered because all the three g are
now represented by the same set of parameters so that
g and g can be computed once the parameters in
the g¢* equation are determined. We note that this
problem does not arise in a binary mixture and has
never been studied before.
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