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ASTRACT The types of covariate and sample size may influence many statistical methods. 

This study involves a rigorous Monte Carlo simulation to illustrate the effect of different types of 

covariate and sample size on parameter estimation for binary logistic regression model. The 

simulation study covers different sample sizes and types of covariate (continuous, count, 

categorical). This study shows how the MLE parameter estimates are affected by different types of 

covariate. The simulation results confirm that the parameter estimates improves as sample size 

increases. Results for single normal, two normal, categorical and count covariate show that sample 

size below 50 produced highly biased estimates. For model with skewed covariate, sample size of 

150 and below produced biased estimates. The variability of parameter estimate increases when   

of the Poisson distribution increases. An application to a real data set confirms the results of the 

simulation study.  

 ABSTRAK Jenis pembolehubah tidak bersandar dan saiz sampel boleh mempengaruhi 

pelbagai kaedah berstatistik. Kajian ini mengkaji secara teliti menggunakan simulasi Monte Carlo 

dan seterusnya memperlihatkan kesan perbezaan pembolehubah tidak bersandar dan saiz sampel 

terhadap penganggaran parameter bagi model regresi logistik binari. Kajian simulasi dengan 

perbezaan saiz sampel dan jenis pembolehubah tidak bersandar (selanjar, kiraan, berkategori) 

telah dijalankan. Kajian ini menunjukkan bagaimana penganggaran kemungkinan maksima 

dipengaruhi oleh jenis pembolehubah tidak bersandar. Kajian simulasi menunjukkan 

penganggaran parameter semakin baik sejajar dengan peningkatan saiz sampel. Keputusan bagi 

model yang mempunyai satu dan dua pembolehubah tidak bersandar normal,  satu pembolehubah 

berkategori dan kiraan menunjukkan saiz sampel kurang dari 50 menghasilkan penganggaran 

parameter yang sangat tidak tepat. Bagi model dengan pembolehubah tidak bersandar yang 

bertaburan tidak normal, saiz sampel 150 dan kurang menghasilkan penganggaran parameter 

yang tidak tepat. Variasi anggaran parameter meningkat apabila   bagi taburan Poisson 

meningkat. Suatu aplikasi terhadap data sebenar mengesahkan dapatan kajian simulasi. 

(Keywords: Parameter estimation, simulation, binary logistic regression, MLE) 

 
 

INTRODUCTION 

Regression methods have become an 

integral component in exploring the 

relationship between a response variable and 

one or more explanatory variables. The 

difference between linear regression model 

and logistic regression model is that the 

outcome variable in logistic regression 

model is binary or dichotomous. The logistic 

regression model is useful to describe the 

relationship between a categorical dependent 

variable and a set of continuous or 
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categorical independent variable (Kutner M. 

H. et al, 2004; Hosmer Jr. D. & Lemeshow 

S., 2004). Logistic regression model is a 

very important statistical model and is 

widely used in medical (Bender R. & 

Grouven U., 1997; Siqueira A. L. & 

Cardoso C. S., 2008; Citko D. et al, 2012) 

epidemiology (Ancel P. Y., 1999; Burguet 

A., 2004; Astolfi P. et al, 2006), psychology 

(Rosenfeld B. & Penrod S. D.,2011; Eke G. 

at al, 2012), business (Puagwatana S. & 

Gunawardana K. D., 2005; Hauser R. P. & 

Booth D., 2011), finance (Bensic M. et al, 

2005; Han D. et al, 2008) and social 

(Howell-M N. & Proctor E., 1993; Fullerton 

A. S., 2009) research.  

One of the major applications of statistical 

modeling is estimating the population 

parameters from sample statistics. In 

regression modeling, there are two general 

methods of parameter estimation which are 

least-squares estimation (LSE) and 

maximum likelihood estimation (MLE). 

MLE has several optimal properties such as 

sufficiency, consistency, efficiency and 

parameterization invariance (Myung I., 

2003). In fitting a logistic regression model, 

the MLE is used to estimate the model 

parameters. This method is suitable to be 

applied to problems associated with binary 

response variable. In the MLE method, the 

likelihood function must first be constructed. 

Then, the Newton Raphson Iterative method 

is used to obtain the value of ̂ . Newton-

Raphson is an efficient method based on the 

idea of linear approximation. 

 

The distribution of covariates may affect the 

statistical parametric methods. The use of 

classical parametric methods such as 

Student’s t, Analysis of Variance (ANOVA) 

and ordinary least squares regression when 

the assumption (e.g., normality) is violated, 

can lead to the inaccurate calculation of p 

value and confidence interval (Hurn E. D. 

M. & Mirosevich V. M., 2008). The 

simulation study by (Jahan S. & Khan A 

,2012) shows that the power of t-test for the 

simple linear regression model was affected 

by sample size, skewness and kurtosis. The 

performance of the t-test was determined by 

calculating Type I error while the power of 

the t-test was evaluated by calculating the 

probability that Type II error will not occur. 

(Khan A. & Rayner G., 2003) investigated 

the effect of deviating from the normal 

distribution assumption for ANOVA and 

Kruskal-Wallis test. The results showed that 

both tests are affected by the kurtosis of the 

error distribution, but less affected by the 

skewness. (Curran P. J. et al, 1996) reported 

that the violation of the assumption of 

normality affects the normal theory 

maximum likelihood 2  test in 

confirmatory factor analysis. Additionally, 

the Browne’s asymptotic distribution free 
2  is affected by normal and non-normal 

data for small sample size, but is unbiased at 

sample sizes of 500 and above regardless of 

distribution, while the Satorra-Bentler 

rescaled 2  showed that non-normal data 

stop affecting this test at sample size of 200 

and above.  (Whittemore A.,1981) found 

that sample size in modeling logistic 

regression is affected by distributions of 

covariate (Normal, Exponential, Poisson, 

Bernoulli).  

 

In the real world, multicollinearity among 

independent variables has been found to 

have a significant effect on the variances of 

the maximum likelihood estimator (MLE). 

Several methods such as boosted regression 

and penalized regression have been 

proposed to deal with this problem. The 

ridge type estimator has been proposed by 

(Schaefer R. & Roi L.,1984) to obtain 

smaller mean squared error for the MLE and 

overcome the multicollinearity problem. The 

lasso method proposed by (Tibshirani R., 
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1996) to deal with multicollinearity for the 

linear regression problem was extended by 

(Kim Y. & Kim J., 2006) for logistic 

regression. However, they used independent 

covariates in their study. Thus, future 

research may consider the performance of 

logistic regression if multicollinearity of the 

covariates exists and the most effective way 

to deal with this problem. 

 

In a logistic regression model, several 

methods have been proposed to calculate 

sample size (Whittemore A.,1981),  (Self, S. 

& Mauritsen, R., 1988; Hsieh F. Y.,1989; 

Hsieh F. Y. et al,1998; Demidenko E., 

2006). Most of the methods did not illustrate 

the effect of the count covariate in the 

model. The effect of different distributions 

also has not been investigated rigorously. 

(Hamid H.A. et al., 2015), investigated the 

effect of different sample size and 

distribution of a continuous covariate on 

parameter estimation. The distributions were 

limited to; N(0,1), Beta(4,2) and U(-3, 3). 

This study extends (Hamid H.A. et al.,2015) 

simulation study by considering positively 

and negatively skewed continuous 

distribution, count and categorical covariate. 

The aim of this study is to assess rigorously 

the effects of different types of covariate 

(continuous, count, categorical) and 

distributions on the MLE parameter 

estimates for the binary logistic regression 

model via a Monte Carlo simulation study. 

The simulation was carried out using R an 

open-source programming software.  

 

In Section 2, we present a brief review of the 

binary logistic regression model followed by 

the simulation procedure in Section 3. The 

simulation results are discussed in Section 4 

and an application to a real dataset is shown 

in Section 5. Some discussions and 

conclusion are in Section 6. 

 

BINARY LOGISTIC 

REGRESSION MODEL 

Generalized Linear Models (GLMs) are an 

extension of the traditional linear model and 

were introduced by (Nelder J. & Baker R., 

1972).  In GLMs, the response variable yi is 

assumed to follow an exponential family 

distribution with mean i  which is assumed 

to be some function of T
ix , where i  is 

often a nonlinear function of the covariates. 

The GLMs are the broad class models that 

include lots of model such as linear 

regression, ANOVA, Poisson regression and 

log-linear model. Generally, there are three 

components to any GLMs, which are 

random component - refers to the probability 

distribution of the response variable Y; 

systematic component - specifies the 

explanatory variables X in the model; and 

link function,   or  g  - specifies the link 

between random and systematic 

components. The linear combination of 

predictor variables is connected to the 

dependent variable via a link function. The 

link function such as logit, probit and log-

linear connects the means of the response to 

the linear predictors and handles non-

normality effectively. The GLM model can 

be expressed as: 

   'ii xgyE   where  iyE  is the mean of 

the response, g is the link function and 'ix  

is the linear predictor. In binary logistic 

regression model, the logit link function is 

often being used. 

Let n be the number of observations with 

binary outcomes denoted by Y  which have 

value “0” and “1”. The event of interest is 

coded as “1” or “0” otherwise. Let the 

vector )( ,...,,,' 321 kxxxxx  denote the set of k 

predictor variables. The logistic regression 

equation for predicting the probability of the 



Malaysian Journal of Science 35(1) : 44 – 62 (2016) 

 

47 

 

event can be expressed by (Hosmer D. & Lemeshow S., 1980):   

thus, 

    )( 1

0

1

0

1|1 i

xx

i xeexXYP
hi

k

h

h

k

h

hih



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




 (1) 

   ii xxXYP  1|0  (2) 

 

The explanatory or predictor variable ix  

may be quantitative (continuous), qualitative 

(discrete) or both (mixed). This study 

considered single and two predictor 

variables only.  

SIMULATION PROCEDURES 

 

The simulations were performed using R an 

open source programming software. For 

each simulation, the sample size of 30, 50, 

100, 150, 300, 500, 1000, 1500, 3000 and 

5000 were considered. The data were 

generated using the technique used by (Xie 

X.-J. et al, 2008). For a given set of value 

for   and n:  

(1) Generate covariate x from the stated 

distribution 

(2) Evaluate the binary logistic regression 

probabilities, 0  and  1  

(3) Generate the data u from a uniform 

distribution, U(0,1) 

(4) Generate outcomes for binary logistic 

regression by using the rule y=1 if 

 xu   and y=0 otherwise 

(5) Fit binary logistic regression model to the 

data. 

(6) Repeat (1)-(5) for 10000 replications. 

(7) Calculate the mean of  . 

(8) Calculate the 95%  Confidence Interval 

(CI) for  . 

 

To obtain 95% confidence interval (CI)  for 

 , we first obtain parameter estimates for 

10,000 replications. The 95% CI is the 2.5
th

 

percentile and 97.5
th

 percentile of the 

parameter estimates from 10000 

replications. The distributions of the 

covariate and the true parameters for binary 

logistic regression model are presented in 

Table 1. The N(0,1) distribution yields 

continuous data with symmetric distribution, 

while Beta (12,1) and  42  produced 

negatively skewed and positively skewed 

continuous distribution respectively. The 

Poisson (1), Poisson (2) and Poisson (3) 

were chosen to represent count data with 

different  . The binary categorical data 

were generated by using Binomial (1/2) 

distribution. These distributions were 

selected to cover various types of data for a 

covariate. The simulation was carried out 

using 10,000 replications. The R codes for 

the simulation are given in Appendix 1. 

Table 1. Distributions of Covariate and True Logistic Regression Coefficient 
Setting Covariate distribution Skewness Kurtosis Logistic regression coefficient 

1 N(0,1) 0.000 2.996 0.7=0 , 1.08=1  

2 Beta(12,1) -1.577 6.108 0.7=0 , 1.08=1  

3  42  
1.405 5.931 0.7=0 , 1.08=1  

4 Poisson(1) - - 0.7=0 , 1.08=1  

5 Poisson(2) - - 0.7=0 , 1.08=1  

6 Poisson(3) - - 0.7=0 , 1.08=1  

7 Binomial(1/2) - - 0.7=0 , 1.08=1  
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8 N(0,1) and N(0,1) 0.000 and 0.000 2.996 and 2.996 0.7=0 , 1.08=1 , 1.69=2  
9 N(0,1) and Beta(12,1) 0.000 and -1.577 2.996 and 6.108 0.7=0 , 1.08=1 , 1.69=2  

10 
N(0,1) and  42  

0.000 and 1.405 2.996 and 5.931 0.7=0 , 1.08=1 , 1.69=2  

 

 

SIMULATION RESULTS 

 

This section presents the simulation results. 

We chose various distributions of data to 

represent various situations in practice. The 

aim is to cover three different types of data 

(one continuous, two continuous, count and 

categorical) and this yields seven 

distributions to be considered in the 

simulation procedures. 

Continuous Data in Covariates 

 

First, we considered three different 

continuous distributions to investigate the 

effect on the estimation of the parameter for 

a simple binary logistic regression. The 

distribution N(0,1) was chosen to represent 

normal data, Beta(12,1) represents 

negatively skewed data and )4(2  

represents positively skewed data. Table 2 

summarizes the results of the parameter 

estimates for different distributions of 

covariate for different sample size. In 

addition, we provide the 95% confidence 

interval for parameter estimation at different 

level of sample size. Results show that small 

sample size (n=30) yields poor estimation of 

0  and 1  for all types of distribution. The 

parameter estimates for skewed covariate 

are severely affected when the sample size is 

small. When covariates are normal or 

positively skewed, the estimated value for 

1  were higher than the set value. On the 

other hand, when sample size is less than 

300 and covariate are negatively skewed, the 

estimated parameter is less than the set 

value. The estimation of both parameters 0  

and 1  for normal distributions gets closer 

to the true parameter values at sample size 

of 100 and above while negatively skewed 

and positively skewed distributions require 

at least 1500 and 500 respectively to be 

close to the true parameter value. 

Table 2. Parameter Estimates (Model with One Covariate) 

Sample 

size 

N(0,1) 

Skewness = 0.000 

Beta(12,1) 

Skewness = -1.584 

2 (4) 

Skewness = 1.414 

0.7=ˆ
0  
(95% 

Confidence 

Interval) 

1.08=ˆ
1  
(95% 

Confidence 

Interval) 

0.7=ˆ
0  
(95% 

Confidence 

Interval) 

1.08=ˆ
1  
(95% 

Confidence 

Interval) 

0.7=ˆ
0  
(95% 

Confidence 

Interval) 

1.08=ˆ
1  
(95% 

Confidence 

Interval) 
30 0.787    

(0.776, 0.797)  

1.295 

(1.280, 1.310) 

31.158   

(12.003, 50.313)    

-28.131 

(-47.468, -8.794) 

-34.703  

(-50.936, -18.470)   

65.166 

(39.083, 91.250) 

50 0.742 

(0.734, 0.749)     

1.182 

(1.173, 1.191) 

2.222    

(2.034, 2.409) 

-0.394   

(-0.590, -0.198)  

-10.458    

(-13.682, -7.234) 

27.009 

(21.647, 32.372)    

100 0.721    

(0.716, 0.726)   

1.128 

(1.122, 1.134) 

1.286     

(1.200, 1.372) 

0.511 

(0.419, 0.603) 

-1.431 

(-3.314, 0.452)      

7.041   

(1.926, 12.155)   

150 0.711     

(0.707, 0.715)  

1.114 

(1.109, 1.119) 

1.057  

(0.994, 1.120)     

0.731 

(0.663, 0.799) 

0.581  

(0.523, 0.639)     

1.563    

(1.221, 1.906) 

300 0.707     

(0.705, 0.710)  

1.095 

(1.092, 1.099) 

0.902  

(0.859, 0.944)     

0.881 

(0.835, 0.926) 

0.661  

(0.649, 0.672)     

1.168 

   (1.161, 1.176) 

500 0.705      

(0.703, 0.707) 

1.089 

(1.086, 1.091) 

0.824 

(0.792, 0.856)      

0.956 

(0.922, 0.991) 

0.678   

(0.669, 0.687) 

1.128    

(1.123, 1.133) 

1,000 0.702    

(0.700, 0.703)    

1.085 

(1.083, 1.086) 

0.764  

(0.743, 0.786)      

1.015 

(0.992, 1.039 ) 

0.690 

(0.684, 0.696)    

 1.104  

(1.100, 1.108) 



Malaysian Journal of Science 35(1) : 44 – 62 (2016) 

 

49 

 

1,500 0.701   

(0.700, 0.702)     

1.083 

(1.081, 1.084) 

0.714     

(0.697, 0.732)   

1.067 

(1.048, 1.087) 

0.694 

(0.689, 0.699)       

1.095   

(1.092, 1.098)  

3,000 0.701     

(0.700, 0.702)   

1.081 

(1.080, 1.082) 

0.714      

(0.701, 0.726)  

1.068 

(1.054, 1.081) 

0.696      

(0.693, 0.700)  

1.088 

(1.086, 1.090)    

5,000 0.701       

(0.700, 0.702) 

1.081 

(1.080, 1.081) 

0.699 

(0.689, 0.708)       

1.083 

(1.072, 1.093) 

0.701 

(0.698, 0.703)  

1.083  

(1.081, 1.084)   

 

The box-plots for parameter estimates 1  

for different sample sizes and different 

distributions of covariate are shown in 

Figure 1. The parameter estimate gets closer 

to the true value when the sample size 

increases. The box-plots shows that for all  

 

covariate distributions the standard deviation 

decreases as sample size increases. The 

parameter estimate for negatively skewed 

covariate has largest variability compared to 

normal covariate or positively skewed 

covariate. 

 

Figure 1. Box-plots of parameter estimates ( 1̂ ) for continuous covariate 

 

Next we investigate the effects of different 

data distributions when the model contains 

more than one covariate. The data for the 

model that contains two continuous 

variables was generated. At least one of the 

covariate distributions in this model is from 

N(0,1). This is to avoid severe imbalanced 

data set being generated for the dependent 

variable. The results of this simulation study 

are summarized in Table 3. The results 

obtained are consistent with the results for a 

single covariate. The estimation for 0 , 1  
and 2  for a model that contains skewed 

covariate are severely affected at small 

sample size. The model that contains no 

skewed covariate is less affected and the 

estimates approach true parameter values at 

sample size of 500. The model that contains 

skewed covariate need more than 500 to 

obtain reliable parameter estimates.  

 

The box-plots for parameter estimates 2̂  

for different sample sizes and different 

distributions of covariate by excluding 

sample size of 30 are shown in Figure 2. 

Consistent with the results obtained for a 

single covariate model, the estimates 

approaches the true value when the sample 

size increases. The box-plots show that the 

3
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standard deviation for all covariate 

distributions decreases as sample size 

increases. The parameter estimate for the 

model that contains one skewed covariate 

has largest variability compared to the 

model that contains both normal covariate. 

 

The Mean Squared Error (MSE) measures 

how close the fitted ̂  is to the true value 

.Table 4 shows the Mean Squared Error 

(MSE) for all three models. The MSE is 

very large when n is small and for skewed 

covariate.  

 

 

 

 

 

                       Figure 2. Box-plots of parameter estimates ( 2̂ ) 

 

Model 1   : Two N(0,1) covariates; 

Model 2   : One N(0,1) and one Beta(12,1) covariates; 

Model 3   : One N(0,1) and one 2 (4) covariates. 

 

Table 4. Mean Squared Error (Model with Two Covariates) 

Sample 

size 

Model 1:  

Normal(0,1), Normal(0,1) 
Model 2:  

Beta(12,1), Normal(0,1) 

Model 3:  
2 (4), Normal(0,1) 

0.7=0  1.08=1  1.69=2  
0.7=0  1.08=1  1.69=2  

0.7=0  1.08=1  
1.69=2  

30 6752.094 8146.231 48450.34 12381058 13472894 559792.3 328394 165191.5 853380.7 

50 4.144 33.922 27.074 8137.587 19081.91 2371.764 159748.8 195187.7 258465.7 

100 0.095 0.133 0.203 17.724 20.504 0.236 5726.809 5327.336 11004.47 

150 0.058 0.080 0.117 10.786 12.513 0.132 8.896 101.375 178.713 

300 0.027 0.036 0.052 4.719 5.500 0.060 0.311 0.096 0.175 

500 0.016 0.021 0.029 2.743 3.191 0.034 0.173 0.048 0.092 

1,000 0.008 0.010 0.014 1.286 1.504 0.016 0.084 0.022 0.041 

1,500 0.005 0.007 0.010 0.858 1.005 0.011 0.055 0.014 0.027 

3,000 0.002 0.003 0.005 0.428 0.500 0.005 0.026 0.007 0.013 

5,000 0.002 0.002 0.003 0.264 0.310 0.003 0.016 0.004 0.008 
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Table 3. Parameter Estimates (Model with Two Covariates) 

Sample 

size 

Model 1: Normal(0,1), Normal(0,1) Model 2: Beta(12,1), Normal(0,1) 
Model 3: 

2 (4), Normal(0,1) 

0.7=0  1.08=1  1.69=2  
0.7=0  1.08=1  1.69=2  

0.7=0  1.08=1  1.69=2  

30 3.853     

(2.243, 5.463) 

5.588     

(3.821, 7.355) 

9.758 

(5.446, 14.070) 

36.224  

(-32.749, 105.197)  

-11.790    

(-83.744, 60.163) 

26.562 

(11.903, 41.220) 

-2.209 

(-13.442, 9.025)    

69.539  

 (61.685, 77.392) 

115.565 

(97.594, 133.536) 

50 0.824    

(0.784, 0.864)  

1.327     

(1.213, 1.441) 

2.029 

(1.927, 2.130) 

0.974  

(-0.795, 2.742)    

1.896     

(-0.811, 4.604) 

2.848 

(1.894, 3.803) 

-0.217 

(-8.052, 7.618) 

34.215   

(25.579, 42.851)   

43.637 

(33.705, 53.569) 

100 0.738   

(0.732, 0.744)    

1.147 

(1.140, 1.154)      

1.803 

(1.795, 1.812) 

1.006     

(0.923, 1.088)  

0.858      

(0.769, 0.947) 

1.815 

(1.806, 1.824) 

2.096  

(0.613, 3.580) 

4.465  

(3.036, 5.894) 

6.648 

(4.594, 8.702) 

150 0.725      

(0.720, 0.730) 

1.129    

(1.124, 1.135)   

1.765 

(1.758, 1.771) 

0.863    

(0.798, 0.927)   

0.974      

(0.904, 1.043) 

1.769 

(1.762, 1.776) 

0.641 

(0.582, 0.699) 

1.507 

 (1.310, 1.704)     

2.221 

(1.959, 2.483) 

300 0.712      

(0.708, 0.715) 

1.102      

(1.098, 1.1057) 

1.723 

(1.719, 1.727) 

0.778      

(0.736, 0.821) 

1.032      

(0.986, 1.078) 

1.731 

( 1.727, 1.736) 

0.691  

(0.680, 0.702) 

1.160   

(1.154, 1.166)     

1.791 

(1.783, 1.799) 

500 0.707      

(0.705, 0.710) 

1.094    

(1.091, 1.096)   

1.711 

(1.708, 1.715) 

0.777    

(0.744, 0.809)   

1.012      

(0.977, 1.047) 

1.710 

(1.707, 1.714) 

0.695   

(0.687, 0.703) 

1.124  

(1.119, 1.128)     

1.747 

(1.741, 1.752) 

1,000 0.703   

(0.701, 0.705)     

1.087 

(1.085, 1.089)       

1.700 

(1.698, 1.703) 

0.721  

(0.699, 0.743)      

1.065       

(1.041, 1.089) 

1.699 

(1.697, 1.702) 

0.699       

(0.693, 0.705) 

1.101   

 (1.098, 1.104)     

1.717 

(1.713, 1.721) 

1,500 0.704       

(0.702, 0.705) 

1.084      

(1.083, 1.086)  

1.698 

(1.696, 1.700) 

0.722   

(0.704, 0.740)     

1.064       

(1.044, 1.083) 

1.699 

(1.697, 1.701) 

0.700      

(0.696, 0.705) 

1.093   

(1.091, 1.095)     

1.704 

(1.701, 1.708) 

3,000 0.701       

(0.700, 0.702) 

1.081      

(1.080, 1.082)  

1.693 

(1.691, 1.694) 

0.708  

(0.696, 0.721)      

1.075       

(1.061, 1.088) 

1.694 

(1.692, 1.695) 

0.700       

(0.696, 0.703) 

1.087   

(1.086, 1.089)     

1.700 

(1.698, 1.702) 

5,000 0.701  

(0.700, 0.701)      

1.081    

(1.080, 1.082)    

1.692 

(1.691, 1.693) 

0.711    

(0.701, 0.721)    

1.069       

(1.058, 1.080) 

1.692 

(1.690, 1.693) 

0.699       

(0.697, 0.701) 

1.085      

(1.084, 1.087)  

1.697 

(1.695, 1.698) 
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Count Data in Covariates 

 

We used three different values of  to 

generate Poisson distribution data. The 

values of  1, 2 and 3 were selected 

to represent the various situations in 

covariate. The simulation results are 

summarized in Table 5. As expected, 

small sample size (n=30) led to poor 

estimates of the model parameter, 0  

and 1 . The parameter estimate 1̂  

for all three distributions is higher than 

the set value  08.11  .The parameter 

estimates 0̂  and 1̂  were more 

severely affected for distribution with 

larger values of  . The parameter 

estimates for Poisson (1) and Poisson 

(2) get closer to true parameter values 

at sample size of 1000 and above 

while the estimates for Poisson (3) the 

estimates only get closer to the true 

parameter value at sample size of 1500 

and above. 

Table 5. Parameter Estimates for Poisson Covariate  

Sample size 

Poisson(1) Poisson(2) Poisson(3) 

0.7=0  
(95% 

Confidence 

Interval) 

1.08=1  
(95% 

Confidence 

Interval) 

0.7=0  
(95% 

Confidence 

Interval) 

1.08=1  
(95% 

Confidence 

Interval) 

0.7=0  
(95% 

Confidence 

Interval) 

1.08=1  
(95% 

Confidence 

Interval) 
30 0.775   

(0.745, 0.805)   

3.532   

(3.411, 3.653 )  

1.139  

(1.000, 1.277)    

4.030  

(3.882, 4.178)   

2.044 

(1.778, 2.311)    

6.167  

 (5.953, 6.381)  

50 0.704 

(0.694, 0.714) 

1.821    

(1.756, 1.886) 

0.762 

(0.716, 0.808)     

2.139   

(2.057, 2.221) 

0.928  

(0.774, 1.082)    

3.762    

(3.613, 3.910) 

100 0.704 

(0.698, 0.711)      

1.195   

(1.179, 1.212)   

0.697     

(0.686, 0.708) 

1.236  

(1.215, 1.257)    

0.666   

(0.627, 0.705)    

1.603 

(1.547, 1.658)     

150 0.702      

(0.697,0.708) 

1.131 

(1.138, 1.124) 

0.705      

(0.697, 0.714) 

1.141  

(1.132, 1.150)   

0.693   

(0.676, 0.709)    

1.214    

(1.195, 1.233) 

300 0.702   

(0.698, 0.706)    

1.109   

(1.104, 1.114)  

0.700      

(0.694, 0.706) 

1.114    

(1.110, 1.119) 

0.699 

(0.690, 0.708)      

1.126    

(1.121, 1.132) 

500 0.700 

(0.697, 0.703) 

1.099 

(1.095, 1.102)    

0.697 

(0.692, 0.701)      

1.101   

(1.098, 1.105)  

0.690 

(0.683, 0.697)      

1.112   

(1.108, 1.116)  

1,000 0.701       

(0.699, 0.703) 

1.086 

(1.083, 1.088)     

0.701      

(0.698, 0.704)  

1.089     

(1.086, 1.091) 

0.700    

(0.695, 0.704)    

1.092    

(1.089, 1.095)  

1,500 0.701   

(0.699, 0.703)     

1.084 

(1.082, 1.086)    

0.701     

(0.698, 0.703)   

1.086 

(1.083, 1.088) 

0.699    

(0.695, 0.703)    

1.089  

(1.086, 1.091)   

3,000 0.699 

(0.698, 0.701) 

1.084    

(1.083, 1.086) 

0.699 

(0.698, 0.701)     

1.083    

(1.082, 1.085) 

0.700    

(0.697, 0.703)    

1.084  

(1.082, 1.086)   

5,000 0.701       

(0.699, 0.701) 

1.081    

(1.080, 1.082) 

0.700  

(0.699, 0.701)      

1.082    

(1.081, 1.083) 

0.700   

(0.698, 0.703)     

1.082    

(1.081, 1.083) 

 

 

Figure 3 shows the box-plots of the 

parameter estimates for different sample 

sizes and different  . Similarly, the 

parameter estimates approaches the true 

value when the sample size increases. The 

dispersion (standard deviation) of parameter  

 

 

estimates for all distributions decreases as 

sample size increases. The parameter 

estimates for Poisson distribution with larger 

values of   have a higher dispersion 

compared to the Poisson distribution with 

lower value  . 
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Figure 3. Box-plots of 1̂  for Poisson Covariate 

 

Categorical Data in Covariates 

 

Then, the binomial distribution was 

generated to investigate the effects of a 

categorical covariate on parameter 

estimation for binary logistic regression. The 

distribution of Binomial(1/2) was used to 

generate data for binary covariate. Table 6 

summarizes the results of parameter 

estimates for a binary covariate. The 

estimation is poor when sample size is small 

(n=30) as the estimated value for 1  are 

higher than the set value( 08.11  ). The 

parameter estimates, 0̂  and 1̂  get closer to 

true parameter values at sample size 500. 

 

Figure 4 shows the box-plots of the 

parameter estimates for a model with 

categorical covariate. It is shown that the 

sample size plays an important role in order 

to decrease inaccurate estimation of model 

parameters. The results for categorical 

covariate is consistent with the results 

obtained for continuous and count covariate. 

The dispersion (standard deviation) for both 

0
̂  and 

1
̂  decreases as sample size 

increases.  
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Table 6. Coefficient Parameter Estimates for Categorical Covariate 

Sample size 

Binomial(1/2) 

0.7=ˆ
0  

(95% Confidence 

Interval) 

1.08=1̂  
(95% Confidence 

Interval)
 

30 
0.832    

(0.805, 0.859)  

2.863 

(2.750, 2.976) 

50 
0.733   

(0.723, 0.743)   

1.541 

(1.486, 1.596) 

100 
0.716  

(0.710, 0.722)     

1.138 

(1.126, 1.150) 

150 
0.711     

(0.707, 0.716)  

1.106 

(1.097, 1.114) 

300 
0.705      

(0.702, 0.708) 

1.095 

(1.089, 1.100) 

500 
0.704 

(0.701, 0.707)      

1.087 

(1.082, 1.091) 

1,000 
0.702     

(0.700, 0.704)   

1.083 

(1.080, 1.086) 

1,500 
0.701 

(0.699, 0.702)       

1.083 

(1.081, 1.086) 

3,000 
0.700       

(0.699, 0.701) 

1.083 

(1.081, 1.085) 

5,000 
0.701  

(0.700, 0.701)      

1.081 

(1.079, 1.082) 

 

 

 

Figure 4. Box-plots of parameter estimation  1̂  for categorical covariate 

 

AN APPLICATION ON REAL 

DATA SET 

 

This section shows the parameter estimates 

by fitting a binary logistic regression model 

using the Intraoperative Hypothermia for 

Aneurysm Surgery Trial (Xie X.-J. et al, 

2008; Todd M. M. et al, 2005) clinical data 

set. The dependent variable is the Glasgow 

outcome score (GOS) (GOS=1 is favorable 

outcome and GOS=0 otherwise) which is 

used to measure whether mild intraoperative 

hypothermia improves long term neurologic 

outcome. The independent variables are 

hypothermia treatment (Yes=1, No=0), age 

in years, and the time in days from 
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subarachnoid hemorrhage (SAH) to 

induction. The sample size is 997 with 

64.4%  are Y=1. We  repeatedly selected 

1000 samples for each sample size of 30, 50, 

100, 150, 300, 500 using stratified sampling. 

The 
1
̂  and the 95% CI for the odds-ratio 

are shown in Tables 7-9.  Results show that 

the parameter estimate is affected by sample 

size. For the simple binary logistic model, 

only Age is a significant predictor of 

Glasgow outcome score (GOS). 

Table 7. Parameter Estimates for hypothermia treatment (Categorical Variable) 

Sample 

size 

1
̂  

(95% CI for 
1
̂ ) 

Odds-ratio 

exp(
1
̂ ) 

(95% CI for 

exp(
1
̂ ) 

30 
0.172  

(0.122, 0.222) 

1.659 

(1.555, 1.764) 

50 
0.156  

(0.118, 0.193) 

1.402 

(1.344, 1.459) 

100 
0.161  

(0.136, 0.186) 

1.275 

(1.240, 1.309) 

150 
0.128  

(0.108, 0.148) 

1.197 

(1.173, 1.222) 

300 
0.147  

(0.134, 0.159) 

1.181 

(1.167, 1.196) 

500 
0.148 

(0.140, 0.156)  

1.169 

(1.160, 1.179) 

997+ 

 

0.146  

 

 

1.157 

 

     +Full orginal sample, *p<0.10, **p<0.05 

 

Table 8. Parameter Estimates and Odds-Ratio for Age  

Sample 

size 

1
̂  

(95% CI for 
1
̂ ) 

exp(
1
̂ ) 

(95% CI for 

exp(
1
̂ ) 

Skewness Kurtosis 

30 
-0.030 

(-0.032, -0.028) 

0.971 

(0.969, 0.973) 
0.012   2.588 

50 
-0.027 

(-0.028, -0.025) 

0.974 

(0.972, 0.976) 
-0.007   2.650 

100 
-0.026 

(-0.027, -0.025) 

0.975 

(0.974, 0.976) 
0.009   2.672 

150 
-0.026 

(-0.026, -0.025)  

0.975 

(0.974, 0.976) 
-0.004 2.666 

300 
-0.025* 

(-0.026, -0.025) 

0.975 

(0.975, 0.976) 
0.000   2.686 

500 
-0.025**   

(-0.025, -0.024) 

0.976 

(0.975, 0.976) 
0.006   2.685 

997+ 

  

-0.025** 

 

 

0.976 

 

0.004   2.689 

+Full orginal sample, *p<0.10, **p<0.05 
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Table 9. Parameter Estimates and Odds-Ratio for time in days from SAH to induction  

Sample 

size 

1
̂  

(95% CI for 
1
̂ ) 

exp(
1
̂ ) 

(95% CI for 

exp(
1
̂ ) 

Skewness Kurtosis 

30 
-0.020 

(-0.030, -0.009)   

0.995 

(0.984, 1.005) 
1.504     4.984 

50 
-0.011   

(-0.018, -0.004) 

0.995 

(0.988, 1.002) 
1.555   5.155 

100 
-0.007   

(-0.012, -0.003) 

0.995 

(0.991, 1.000) 
1.612   5.313 

150 
-0.011   

(-0.014, -0.007) 

0.991 

(0.987, 0.994) 
1.618   5.343 

300 
-0.013   

(-0.015, -0.011) 

0.988 

(0.986, 0.990) 
1.625   5.340 

500 
-0.011   

(-0.012, -0.009) 

0.990 

(0.988, 0.991) 
1.638   5.381 

 

997+ 

 

 

-0.011  

 

0.989 1.637   5.367 

+Full orginal sample, *p<0.10, **p<0.05 

 

Table 10 summarized the results for a binary 

logistic regression model with three 

covariates which are hypothermia treatment 

(X1), age in years (X2) and the time in days 

from subarachnoid hemorrhage (SAH) to 

induction (X3). The results were consistent 

with the single covariate model whereby 

only Age was significant for sample size 

300 and above. 

 

Table 10. Parameter Estimates and Odds-Ratio results 

Sample 

size 

1
̂  Odds-ratio 

exp(
1
̂ ) 

2
̂  Odds-ratio 

exp(
2

̂ ) 
3

̂  Odds-ratio 

exp(
3

̂ ) 

(95% CI) (95% CI for  

exp(
1
̂ ) 

(95% CI) (95% CI for  

exp(
2

̂ ) 

(95% CI) (95% CI for  

exp(
3

̂ ) 

30 
0.187  

(0.130,0.244) 

1.873   

(1.704,2.043) 

-0.033  

(-0.036,-0.031) 

0.968  

(0.965,0.970)  

-0.019 

(-0.032,-0.007) 

1.001 

(0.988,1.013) 

50 
0.181 

(0.141,0.222)   

1.489  

(1.421,1.557) 

-0.029  

(-0.030,-0.027) 

0.972  

(0.970,0.974) 

-0.005   

(-0.012,0.003) 

1.003 

(0.995,1.010) 

100 
0.178   

(0.152,0.205) 

1.308  

(1.271,1.345) 

-0.027  

(-0.028,-0.026) 

0.974  

(0.973,0.975) 

-0.002 

(-0.007,0.003)   

1.001 

(0.996,1.006) 

150 
0.154   

(0.134,0.175) 

1.233 

(1.207,1.259)  

-0.026 

(-0.027,-0.025)   

0.974  

(0.973,0.975) 

-0.005   

(-0.009,-0.002) 

0.996 

(0.993,1.000) 

300 
0.171  

(0.159,0.184)  

1.212  

(1.197,1.228) 

-0.025*  

(-0.026,-0.025) 

0.975  

(0.974,0.975) 

-0.007 

(-0.010, -0.005)   

0.993 

(0.991,0.995) 

500 
0.175  

(0.167,0.183)  

1.202  

(1.192,1.212) 

-0.025**   

(-0.025,-0.025) 

0.975  

(0.975,0.976) 

-0.006  

(-0.007,-0.004)  

0.995 

(0.993,0.996) 

 

997+ 

 

0.173 1.189 -0.025** 0.975 -0.006 0.994 

+Full orginal sample, *p<0.10, **p<0.05 
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CONCLUSION 

 

This study examined the effect of three 

types of covariate (continuous, count, 

categorical) on the parameter estimation in 

binary logistic regression model. The results 

of this simulation study show that the 

estimation of parameters is severely affected 

by small sample size. The parameter 

estimates get closer to the true value when 

sample size increases. This simulation study 

shows that for models with normal 

distribution, categorical and count data, 

sample size smaller than 50 produced highly 

biased estimates. Meanwhile, for models 

with skewed distribution, sample size of 150 

and below produced very biased estimates. 

Hence, in conclusion, when the data are 

skewed, a larger sample is required to 

produce unbiased estimate. The application 

on a real data set confirms the results of the 

simulation study. These results are 

consistent with the results achieved by 

(Hurn E. D. M. & Mirosevich V. M., 2008; 

Jahan S. & Khan A., 2012; Khan A. & 

Rayner G., 2003; Curran P. J. et al, 1996; 

Whittemore A., 1981) who reported that the 

distributions and sample size affected the 

performance of the statistical methods. This 

study is limited to only two covariates and 

did not consider the issue of 

multicollinearity or imbalanced data. 

Logistic regression is still one of the most 

important generalized linear models as it is 

useful for classification problems which 

involves categorical response variable. 

Future work can look into extensions of 

logistic regression for large scale data in 

recent years such as large scale Bayesian 

logistic regression (Genkin A. at al, 2007), 

robust logistic regression for large sparse 

datasets with Binary Outputs (Komarek P. & 

Moore A., 2003). Large-scale Logistic 

models with Distributed Training (Gopal, S. 

& Yang, Y., 2013). Currently, work is in 

progress to extend this simulation study to 

multinomial, ordinal logistic regression and 

LASSO logistic regression. 
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Appendix 1 

#R simulation codes for model X~N(0,1) with 30 sample size 

 

library(moments) 

library(MASS) 

library(Rmisc) 

 

h<-10000 # number of replications 

 

beta0Hat<-rep(NA,h) # Create vector to store b0 value 

beta1Hat<-rep(NA,h) # Create vector to store b1 value 

set.seed(12345) 

for(n in 1:h) 

{ 

rx<-rnorm(30,0,1) # generate standard normal distribution data 

x<-as.matrix(rx) #convert to matrix form 

z = (0.7 + 1.08*x)        # z=b0+b1x 

pr = 1/(1+exp(-z))        # pass through an inv-logit function 

ru<-runif(30,0,1)  # generate u from uniform distribution 

u<-as.matrix(ru) #convert to matrix form 

y <- ifelse((u<=pr),1,0) #assign y based on u and probability(pr) 

df<-data.frame(y=y,x=x) #combined into a data frame 

mod<-glm(y~x,data=df,family="binomial") # fit binary logistic regression model 

beta0Hat[n]<-as.numeric(mod$coef[1]) #store b0 value 

beta1Hat[n]<-as.numeric(mod$coef[2]) #store b1 value 

} 

round.mean<-round(c(beta0=mean(beta0Hat),beta1=mean(beta1Hat)),3) #calculate mean for 

parameter estimates 

CIB0<-CI(beta0Hat, ci = 0.95) #calcutate 95% CI for b0 

CIB1<-CI(beta1Hat, ci = 0.95) #calcutate 95% CI for b1 

 

round.mean  #print parameter estimates 

CIB0  #print 95% CI for b0 

CIB1  #print 95% CI for b1 
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Appendix 2 

#R codes for application to real data set n=30 

 

library(Hmisc) 

library(Rmisc) 

library(sampling) 

library(moments) 

 

mydata <- spss.get(file.choose(), use.value.labels=TRUE) # read in Intraoperative Hypothermia 

for Aneurysm Surgery Trial clinical data csv file 

 

h<-1000 #number of replications 

 

beta0Hat<-rep(NA,h) # Create vector to store b0 value 

beta1Hat<-rep(NA,h) # Create vector to store b1 value 

beta2Hat<-rep(NA,h) # Create vector to store b2 value 

beta3Hat<-rep(NA,h) # Create vector to store b3 value 

OR1<-rep(NA,h) # Create vector to store odds ratio for b1 value 

OR2<-rep(NA,h) # Create vector to store odds ratio for b2 value 

OR3<-rep(NA,h) # Create vector to store odds ratio for b3 value 

set.seed(12345) 

for(i in 1:h) 

{ 

s=strata(mydata,stratanames="GOS3MO",size=c(11,19), method="srswor")  # the sample 

stratum sizes are 11(36.67%) and 19(63.33%) respectively, n=30 

# the method is 'srswor' (equal probability, without replacement) 

sample_data=getdata(mydata,s) # extracts the observed data 

 

sample_data$TXASSIGN <- factor(sample_data$TXASSIGN)  # declare TXASSIGN as a 

categorical variable 

 

mylogit <- glm(GOS3MO ~ TXASSIGN + AGE + TSAHTOIND, data = sample_data, family = 

"binomial") # fit binary logistic regression model 

 

beta0Hat[i]<-as.numeric(mylogit$coef[1]) #store b0 value 

beta1Hat[i]<-as.numeric(mylogit$coef[2]) # store b1 value 

beta2Hat[i]<-as.numeric(mylogit$coef[3]) # store b2 value 

beta3Hat[i]<-as.numeric(mylogit$coef[4]) # store b3 value 

OR1[i]<-exp(as.numeric(mylogit$coef[2])) # store odds ratio for b1 value 

OR2[i]<-exp(as.numeric(mylogit$coef[3])) # store odds ratio for b2 value 

OR3[i]<-exp(as.numeric(mylogit$coef[4])) # store odds ratio for b3 value 

} 
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round.mean<-

round(c(beta1=mean(beta1Hat),OR1=mean(OR1),beta2=mean(beta2Hat),OR.2=mean(OR2), 

beta3=mean(beta3Hat),OR.3=mean(OR3)),3) #calculate mean for parameter estimates and odds 

ratio 

CIB0<-CI(beta0Hat, ci = 0.95) #calcutate 95% CI for b0 

CIB1<-CI(beta1Hat, ci = 0.95) #calcutate 95% CI for b1 

CIB2<-CI(beta2Hat, ci = 0.95) #calcutate 95% CI for b2 

CIB3<-CI(beta3Hat, ci = 0.95) #calcutate 95% CI for b3  

CIOR1<-CI(OR1, ci = 0.95) #calcutate 95% CI for b1 odds ratio 

CIOR2<-round(CI(OR2, ci = 0.95),3) #calcutate 95% CI for b2 odds ratio 

CIOR3<-round(CI(OR3, ci = 0.95),3) #calcutate 95% CI for b3 odds ratio 

 

round.mean  #print parameter estimates and odds ratio 

round(CIB1,3)  #print 95% CI for b1 

round(CIB2,3) #print 95% CI for b2 

round(CIB3,3) #print 95% CI for b3 

round(CIOR1,3) #print 95% CI for b1 odds ratio 

round(CIOR2,3) #print 95% CI for b2 odds ratio 

round(CIOR3,3) #print 95% CI for b3 odds ratio 
 

 

 

 

 

 

 

 

 

 

 

 

 

 


