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ABSTRACT Traditional inferential procedures based on the asymptotic normality assumption such as the Wald 

often produce misleading inferences when dealing with censored data and small samples. Alternative estimation 

techniques such as the jackknife and bootstrap percentile allow us to construct the interval estimates without relying 

on any classical assumptions. Recently, the double bootstrap became preferable as it is not only free from any 

classical assumptions, but also has higher order of accuracy. In this paper, we compare the performances of the 

interval estimates based on the double bootstrap without pivot with the Wald, jackknife and bootstrap percentile 

interval estimates for the parameters of the log logistic model with right censored data and covariates via a coverage 

probability study. Based on the results of the study, we concluded that the double bootstrap without pivot technique 

works better than the other interval estimation techniques, even when sample size is 25. The double bootstrap 

without pivot technique worked well with real data on hypernephroma patients.   

 

(Keywords: censored data, coverage probability study, double bootstrap, interval estimation, log logistic) 

 

INTRODUCTION 

 

 

In survival analysis, large sample interval estimation 

based on the asymptotic normality assumptions (also 

known as Wald interval) is often used as a technique to 

construct confidence interval for parameters when 

censored data are involved. Literature shows that 

misleading inferences could arise when dealing with 

censored observations and small sample sizes, see [1], 

[2], [3], [4] and [5]. Jackknife and bootstrap are 

resampling techniques that do not rely on asymptotic 

normality assumption and therefore are able to produce 

more reliable interval estimates.  

 

Jackknife technique was first introduced for bias 

estimation of a statistic of interest in small sample [6], 

[7]. The technique later was expanded for estimating 

standard errors and constructing reasonably reliable 

confidence interval estimates [8]. A complete review on 

the jackknife technique and its application can be found 

in [9]. The bootstrap technique was first introduced by 

Efron [10] who proposed the bootstrap percentile (B-p) 

interval. It constructs interval estimates based on the 

percentiles of the bootstrap distribution of a statistics. 

 

The B-p interval estimation technique is popular due to 

its simplicity and ability to produce accurate results 

without having the knowledge of normalizing 

transformations [11]. More discussion on bootstrap 

confidence intervals can be obtained in [12], [13], [14], 

[15] and [16]. 

 

Double bootstrap (DB) is a sampling procedure that 

involves resampling from the bootstrap samples. This 

technique was originally suggested by Efron [17]. The 

theory of DB confidence intervals was developed by 

Hall [18], Beran [19], Loh [20] and Martin [21]. 

Theoretically DB produces better interval estimation 

than ordinary or single bootstrap as it has higher order 

of accuracy. DB reduces the error in the ordinary 

bootstrap by estimating an error and using it to adjust 

the ordinary bootstrap according to [22] and [23]. 

Chernick [24] provided a complete literature on 

bootstrap interval estimation techniques. The 

application of the DB confidence interval involving 

censored and truncated data can be found in [25]. The 

authors compared the performance of single and double 

bootstrap interval estimation techniques and highlighted 

that the latter works better.  

 

In this research, we investigate the performance of the 

Wald, jackknife, B-p and DB without pivot (DB-p) 

techniques via coverage probability study at two 

nominal error probability levels for the parameters of 

log logistic regression model with right censored data. 

Moderate and small samples will be focused in our 

study. Each sample will be investigated at two 
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censoring proportions. A real data set is analyzed and 

some concluding remarks are made at the end of this 

paper.  

 

THE MODEL 

 

The log logistic is a popular parametric distribution in 

the survival analysis due to its ability to accommodate 

nonmonotonic hazard functions. Examples of 

nonmonotonic hazard function are given in the lung 

cancer trial [26], the curability of breast cancer study 

[27] and the AIDS infection rate study [28]. Several 

authors have discussed the log logistic distribution. 

Bennett [29] presented the linear model for the log odds 

on survival. Other authors that also made contribution 

are [30], [31], [32], [33] and [25]. 

 

Let T be a random variable representing the lifetimes 

that follow the log logistic distribution, x' = (x0, x1, …, 

xp) be the vector of covariates where x0 = 1, β' = (β0, β1 

…, βp) be the vector of unknown parameters and σ > 0. 

If Y = log(T) and z = (y − β'x)/σ the probability density 

and survival functions could be expressed respectively 

as 
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There are both censored and uncensored lifetimes for i 

= 1, 2, …, n observations and p covariates. The 

indicator variable δi is equal to 1 when ti is uncensored 

and 0 when ti is censored. 

 

The likelihood function for the full sample of n 

independent observations of time and p covariates is, 
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The log-likelihood function is given as follows, 
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Let us define Ai = exp(zi)[1 + exp(zi)]
−1

, where i = 1, 2, 

…, n. For j, k = 0, 1, …, p and xi0 = 1, the first and 

second derivatives of the log-likelihood function are, 

 
 ,)1(

),(

1

iii

n

i

ij

j

A
x













β
 (5) 

 ,)1()1(
1),(

1

iiiii

n

i

Azz 











β
 (6) 

,)]1(1[

)1(
1),(

1

2

ii

iii

n

i

ij

j

Az

A
x





























β

 

(7) 

),1()1(
),(

1
2

2








iii

n

i

ikij

kj

AA
xx




β
 (8) 



.
1

1

)1()21(
1),(

2

2

1
22

2





















iii

iii

n

i

AAz

z






β

 (9) 

 

 

CONFIDENCE INTERVAL ESTIMATION 

PROCEDURES 

 

In this section, we discuss Wald, jackknife, B-p and 

DB-p techniques for constructing the confidence 

interval for the parameters of the log logistic regression 

model in the presence of right censored data. We 

consider one covariate in the model. The model 

involves three parameters, β0, β1 and σ. The bootstrap 

samples were generated using the nonparametric 

bootstrap resampling technique. 

 

Asymptotic Normality (Wald) 

 

Let θ̂  be the maximum likelihood estimate (MLE) for 

the vector of parameters θ. Cox and Hinkley [34] 

showed that under mild regularity conditions, θ̂  is 

asymptotically normally distributed with mean θ and 

covariance matrix I(θ)
−1

, where I(θ) is the Fisher 

information matrix evaluated at θ. The matrix I(θ) can 

be estimated by the observed information matrix )ˆ(θi . 

The estimate of )ˆvar( j is then given by the j
th

 diagonal 

element of the inverse of )ˆ(θi . If z1 − α/2 is the 1 − α/2 

quantile of the standard normal distribution, then the 

100(1 − α)% confidence interval for θj could be 

expressed as 
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2
1
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Jackknife 

 

The jackknife is a resampling technique where each 

subsample removes one observation from the original 

sample [11]. If we have a sample y = (y1, y2, …, yn), 
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then the i
th

 jackknife sample will be y(i) = (y1, y2, …, yi-1, 

yi+1, …, yn) for i = 1, 2, …, n. Let ̂ be the MLE for 

parameter θ, then )(
ˆ

i will be the jackknife replication of 

̂ obtained from the i
th

 jackknife sample. The jackknife 

estimate of the parameter θ and jackknife estimate of 

standard error is then calculated by using 

 ),ˆˆ)(1(ˆˆ
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If t(1 − α/2, n − 1) is the 1 − α/2 quantile of the student's t 

distribution at n − 1 degrees of freedom, then the 100(1 

− α)% jackknife confidence interval for θ could be 

expressed as 
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Bootstrap Percentile 

 

The B-p interval is constructed from the percentiles of 

the bootstrap distribution of the MLE for parameter θ. 

For the sample y = (y1, y2, …, yn), we first generate B 

independent bootstrap samples, y
*1

, y
*2

, …, y
*B

. Then 

we compute the MLE, 
*ˆ
b from the bootstrap sample, 

y
*b

 for b = 1, 2, …, B. Following that, we sort the 
*ˆ
b in 

the ordered list, which we will have .ˆ,,ˆ,ˆ *
][

*
]2[

*
]1[ B 

The 100(1 − α)% bootstrap percentiles confidence 

interval for θ could be expressed as 

 .ˆˆˆ *
)]21([

*
)]2([     BB  (14) 

 

The value of B is chosen such that values of B·(α/2) and 

B·(1 − α/2) are integers. 

 

Double Bootstrap without Pivot 

 

The DB-p confidence interval was proposed by Shi [35] 

and discussed by Letson and McCullough [23]. This 

technique is particularly useful when pivotal 

information is not available. The steps to obtain the 

DB-p confidence interval for parameter θ are as 

follows, 

 

1. Obtain the MLE ̂  based on the sample y = (y1, y2, 

…, yn). 

2. Generate B independent bootstrap samples, y
*1

, y
*2

, 

…, y
*B

 from the original sample. 

3. Compute *ˆ
b , MLE from the bootstrap sample, y

*b
 

for b = 1, 2, …, B. 

4. Sort the *ˆ
b in an ascending order to obtain ,ˆ*

]1[

,ˆ*
]2[ , .ˆ*

][B  

5. Draw another C bootstrap resamples for each y
*b

, b 

= 1, 2, …, B. 

6. Compute the ,ˆ **
bc MLE from the bootstrap resample 

for b = 1, 2, …, B and c = 1, 2, …, C. 

7. For each c, calculate the total number of 
**ˆ

bc  that is 

less than or equal to ̂ and divide by numbers of 

bootstrap resamples, C, 

.
)ˆˆ(# **

C
Q bc

b

 
  

 

8. Sort the Qb in an ascending order to obtain Q[1], 

Q[2], …, Q[B]. 

9. Calculate the values, l = B·Q[B·(α/2)] and u = B·Q[B·(1 

− α/2)]. 

10. The 100(1 − α)% DB-p confidence interval for 

parameter θ will be  

 .ˆˆˆ *
][

*
][ ul    (15) 

 

 

COVERAGE PROBABILITY STUDY 
 

Study Design 
 

We conducted a simulation study with N = 1000 for 

sample sizes, n = 25, 30, 40, 50 and 60 to compare the 

performance of the confidence interval estimates at two 

nominal error probabilities, α = 0.05 and 0.10. Two 

levels of approximate censoring proportions (cp) = 5% 

and 10% were used. We generated observations from 

the log logistic distribution with 4.4, -0.03 and 0.6 as 

the true values for parameters β0, β1 and σ respectively 

to replicate data usually seen in the lung cancer studies 

[26]. 

 

The covariate xi were generated from N(0,1). We 

generated random numbers ui from U(0,1) to produce ti 

where ti = exp{β0 + β1xi + σlog[(1 − ui)/ ui]}. In order to 

obtain censored observations, we simulate the 

censoring time, ci ~ exp(λ) where the value of λ can be 

adjusted to obtain the desired approximate censoring 

proportion in our data. We generated B = 1000 

bootstrap samples to construct the B-p and DB-p 

intervals. C = 150 bootstrap resamples were generated 

from each bootstrap sample for the DB-p interval. 
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The coverage probability error of a confidence interval 

is the probability that the true value of the parameter 

falls outside the interval. We obtained the estimated 

coverage probability error by summing up the numbers 

of interval that did not contain the true parameter value 

divided by the total number of samples. The estimated 

left (right) error probability was obtained by summing 

up the numbers for the left (right) endpoint was more 

(less) than the true parameter value divided by the total 

number of samples.  We calculated the left, right and 

total error probabilities for each parameter.  

 

As given in [36], if ̂ is the estimated coverage error 

probability, then its standard error is approximately

.]/)1([)ˆse( 21N   The interval is called 

anticonservative if the total error probability is more 

than .)ˆ2.58se(   If the total error probability is less 

than ),ˆ2.58se(  the interval is called conservative. 

The interval is called symmetric when the larger of the 

left or right error probability is less than 1.5 times the 

smaller one. The simulation study was performed using 

the R programming language. 

 

Study Results and Discussions 

 

The performances of these interval estimation 

techniques were evaluated based on the total numbers 

of anticonservative (AC), conservative (C) and 

asymmetrical (AS) intervals. When α = 0.05, at n ≤ 30, 

the DB-p and jackknife techniques performed the best 

compared to the Wald and B-p (Table 1). The DB-p is 

slightly better than the jackknife as it produces the least 

numbers of AC and AS intervals. However, it produces 

C interval when the data are censored. When n > 30, the 

DB-p performs the best followed by the jackknife, B-p 

and Wald as it did not produce any AC or C intervals. 

 

When α = 0.10, the DB-p performs the best even at n ≤ 

30 because it does not produce any AC, C or AS 

intervals (Table 2). This is followed by the jackknife, 

Wald and B-p where these techniques are still 

producing AC and AS intervals. When n > 30, the DB-

p technique is the preferred technique as it only 

produces one AC interval, followed by the jackknife, 

Wald and B-p. 

  

Hence, overall the DB-p performs the best at all 

nominal levels, sample sizes and censoring proportions. 

The jackknife performs well by producing few AC 

intervals. The B-p and Wald techniques did not perform 

well as they produced too many AC and AS intervals. 

In addition, the left and right error probabilities for DB-

p technique are much closer to the α/2 as compared to 

the Wald, jackknife and B-p techniques. The summary 

of interval estimation at α = 0.05 and 0.10 for each 

parameter is given in Table 3 and Table 4. An example 

of graphical display of the left and right error 

probabilities for the interval estimation techniques is 

given in Figure 1 − 3. 

 

 

 

Table 1. Performance of the interval estimation techniques at different n for α = 0.05 

n Technique 
Uncensored cp = 5% cp = 10% 

AC C  AS AC C  AS AC C  AS 

25 Wald           3 0 1 3 0 1 2 0 1 

                 Jackknife      2 0 1 1 0 2 1 0 1 

                 B-p            1 0 2 1 0 2 1 0 2 

                 DB-p           1 0 1 1 1 1 1 1 1 

30 Wald           3 0 1 3 0 1 3 0 1 

                 Jackknife      0 0 1 1 0 1 0 0 1 

                 B-p            2 0 1 2 0 2 2 0 2 

                 DB-p           0 0 1 0 0 1 0 0 1 

40 Wald           1 0 1 1 0 1 1 0 2 

                 Jackknife      0 0 1 1 0 1 1 0 2 

                 B-p            2 0 1 1 0 1 1 0 1 

                 DB-p           0 0 0 0 0 0 0 0 0 

50 Wald           2 0 1 2 0 1 1 0 1 

                 Jackknife      0 0 2 0 0 1 0 0 1 

                 B-p            1 0 1 1 0 1 1 0 2 

                 DB-p            0 0 0 0 0 0 0 0 1 

60 Wald            1 0 2 1 0 2 1 0 3 

                 Jackknife       0 0 2 0 0 1 0 0 2 

                 B-p                     1 0 1 1 0 1 1 0 1 

                 DB-p            0 0 1 0 0 1 0 0 1 
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Table 2. Performance of the interval estimation techniques at different n for α = 0.10 

n Technique Uncensored cp = 5% cp = 10% 

AC C  AS AC C  AS AC C  AS 

25 Wald           2 0 1 2 0 1 2 0 1 

                 Jackknife      1 0 1 1 0 1 0 0 1 

                 B-p            1 0 1 1 0 1 1 0 2 

                 DB-p           0 0 0 0 0 0 0 0 0 

30 Wald           2 0 1 2 0 1 2 0 1 

                 Jackknife      0 0 1 0 0 1 1 0 1 

                 B-p            2 0 1 2 0 2 2 0 1 

                 DB-p           0 0 0 0 0 0 0 0 0 

40 Wald           1 0 1 1 0 1 1 0 1 

                 Jackknife      0 0 1 0 0 1 0 0 1 

                 B-p            1 0 1 1 0 1 1 0 1 

                 DB-p           1 0 0 0 0 0 0 0 0 

50 Wald           0 0 1 1 0 1 0 0 1 

                 Jackknife      0 0 1 0 0 1 0 0 1 

                 B-p            1 0 1 1 0 1 1 0 1 

                 DB-p            0 0 0 0 0 0 0 0 0 

60 Wald            1 0 2 1 0 1 1 0 1 

                 Jackknife       0 0 2 0 0 1 0 0 1 

                 B-p                     1 0 1 1 0 1 1 0 1 

                 DB-p            0 0 0 0 0 0 0 0 0 

 

 

 
Figure 1. Interval estimates for parameter β0 at α = 0.05 and cp = 5% 

 

 

 
Figure 2. Interval estimates for parameter β1 at α = 0.05 and cp = 5% 

 

 

 
Figure 3. Interval estimates for parameter σ at α = 0.05 and cp = 5% 

 

 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

25 30 40 50 60

E
st

im
a
te

d
 E

rr
o
r 

P
ro

b
. 

n 

Wald technique LE

RE

α/2 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

25 30 40 50 60

E
st

im
a
te

d
 E

rr
o
r 

P
ro

b
. 

n 

B-p technique LE

RE

α/2 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

25 30 40 50 60

E
st

im
a
te

d
 E

rr
o
r 

P
ro

b
. 

n 

DB-p technique LE

RE

α/2 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

25 30 40 50 60

E
st

im
a
te

d
 E

rr
o
r 

P
ro

b
. 

n 

  Jackknife technique LE

RE

α/2 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

25 30 40 50 60

E
st

im
a

te
d

 E
rr

o
r 

P
ro

b
. 

n 

Wald technique LE

RE

α/2 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

25 30 40 50 60

E
st

im
a

te
d

 E
rr

o
r 

P
ro

b
. 

n 

B-p technique LE

RE

α/2 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

25 30 40 50 60

E
st

im
a

te
d

 E
rr

o
r 

P
ro

b
. 

n 

DB-p technique LE

RE

α/2 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

25 30 40 50 60

E
st

im
a

te
d

 E
rr

o
r 

P
ro

b
. 

n 

  Jackknife technique LE

RE

α/2 

0.000

0.050

0.100

0.150

0.200

25 30 40 50 60

E
st

im
a

te
d

 E
rr

o
r 

P
ro

b
. 

n 

Wald technique LE

RE

α/2 

0.000

0.050

0.100

0.150

0.200

25 30 40 50 60

E
st

im
a

te
d

 E
rr

o
r 

P
ro

b
. 

n 

B-p technique LE

RE

α/2 

0.000

0.050

0.100

0.150

0.200

25 30 40 50 60

E
st

im
a

te
d

 E
rr

o
r 

P
ro

b
. 

n 

DB-p technique LE

RE

α/2 

0.000

0.050

0.100

0.150

0.200

25 30 40 50 60

E
st

im
a

te
d

 E
rr

o
r 

P
ro

b
. 

n 

  Jackknife technique LE

RE

α/2 

203

Malaysian Journal of Science 34 (2) : 199-207 (2015)



 
 

Table 3. Summary of the performance of the interval estimates for all the parameters at α = 0.05 

cp Technique 
β0 β1 σ 

AC C  AS AC C  AS AC C  AS 

U
n

ce
n

so
re

d
 

Wald           2 0 0 3 0 1 5 0 5 

Jackknife      0 0 1 1 0 1 1 0 5 

B-p            1 0 1 1 0 0 5 0 5 

DB-p           0 0 0 0 0 0 1 0 3 

5% Wald           2 0 0 3 0 1 5 0 5 

                 Jackknife      0 0 1 0 0 0 3 0 5 

                 B-p            0 0 2 1 0 0 5 0 5 

                 DB-p           0 0 0 0 1 0 1 0 3 

10% Wald           1 0 1 2 0 2 5 0 5 

                 Jackknife      0 0 1 0 0 1 2 0 5 

                 B-p            0 0 3 1 0 0 5 0 5 

                 DB-p           0 0 0 0 1 0 1 0 3 

 

 

Table 4. Summary of the performance of the interval estimates for all the parameters at α = 0.10 

cp Technique 
β0 β1 σ 

AC C  AS AC C  AS AC C  AS 

U
n

ce
n

so
re

d
 

Wald           1 0 0 1 0 1 4 0 5 

Jackknife      0 0 0 0 0 1 1 0 5 

B-p            0 0 0 1 0 0 5 0 5 

DB-p           0 0 0 0 0 0 1 0 0 

5% Wald           1 0 0 2 0 0 4 0 5 

                 Jackknife      0 0 0 0 0 0 1 0 5 

                 B-p            0 0 1 1 0 0 5 0 5 

                 DB-p           0 0 0 0 0 0 0 0 0 

10% Wald           0 0 0 2 0 0 4 0 5 

                 Jackknife      0 0 0 0 0 0 1 0 5 

                 B-p            0 0 1 1 0 0 5 0 5 

                 DB-p           0 0 0 0 0 0 0 0 0 

  

 

REAL DATA ANALYSIS 
 

Survival times of 29 hypernephroma patients with 

nephrectomy were obtained from [37]. Here, the age 

group was chosen as the covariate and 13.8% of the 

data is censored. Figure 4 shows that the log logistic 

hazard plot is rather linear, suggesting the log logistic 

distribution is a reasonable fit to the data. Table 5 gives 

the parameter estimates when the data were fitted to the 

log logistic regression model. The 95% confidence 

interval using the Wald, jackknife, B-p and DB-p 

interval estimation techniques were also given. 

 

Figure 5 gives the histogram of 1000 bootstrap 

replications of parameter estimates 10
ˆ,ˆ   and .̂  The 

sampling distribution for all parameters are rather 

skewed and not normally distributed when tested via 

the Kolmogorov-Smirnov test at α = 0.05. Therefore, 

the Wald interval based on the asymptotic normality 

assumptions of the MLEs might not be reliable and 

alternative interval estimation may produce more 

desirable results.  

 

The 95% DB-p confidence intervals for all parameters 

are widest compared to other methods because they 

need to accommodate the bias and adjust the error in 

the ordinary bootstrap procedure (Table 5). The DB-p 

interval for σ is the narrowest among the three 

parameters which agrees with the histogram in Figure 5 

where bootstrap replication of ̂ is less skewed. 

Although the jackknife, Wald and B-p produce 

narrower intervals, they may not be reliable as they may 

fail to include the true parameters value, as indicated by 

our simulation studies. 
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Figure 4. Log logistic hazard plot of the survival time of 29 hypernephroma patients with nephrectomy 

 

 

  

(a) Bootstrap replication of 0̂  (b) Bootstrap replication of 1̂  

  

 
(c) Bootstrap replication of ̂  

Figure 5. 1000 bootstrap replication of 0̂ , 1̂  and ̂  for hypernephroma patients with nephrectomy data 

 

 

Table 5. MLE of hypernephroma patients with nephrectomy data and 95% confidence intervals 

θ  0  1    

θ̂  4.58 -0.69 0.53 

se  0.397 0.221 0.089 

Wald  (3.799,5.354) (-1.125,-0.257) (0.351,0.700) 

Jackknife  (3.856,5.388) (-1.117,-0.326) (0.330,0.752) 

B-p  (3.641,5.300) (-1.020,-0.203) (0.329,0.715) 

DB-p  (3.525,5.247) (-1.041,-0.111) (0.368,0.865) 
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CONCLUSION 

 

Based on the coverage probability studies, we would 

recommend the DB-p technique to be employed as the 

preferred method for the interval estimation for the 

parameters of log logistic regression model especially 

when n is small. It works well when the data is either 

uncensored or censored. This result varies from the 

result obtained by Arasan and Adam [25] for the model 

without covariate when data is truncated, which 

actually did not recommend the DB-p method. The 

jackknife technique could be used as an alternative 

method for the model as it performs as good as the DB-

p. The Wald technique starts to work well when n > 30, 

as expected. However, it produces quite a number of 

anticonservative and asymmetric intervals.   

 

Skewed distributions are common in the survival 

analysis even when the data is uncensored. When we 

bootstrap the sample with censored observations, it is 

possible to have highly skewed bootstrap replications of 

parameter estimates. In this case, the B-p technique is 

more likely to fail as it uses the empirical distribution 

based on the bootstrap replication of the data in hand. 

The performance of the B-p interval does not seem to 

be significantly better than the other interval estimation 

techniques. Therefore, we will not recommend B-p 

interval for this model.  

 

In this research, we considered only small to moderate 

samples with low censoring proportions. Larger sample 

sizes and higher censoring proportions could be 

considered in future. Other double bootstrap interval 

estimation techniques such as DB-t can also be 

considered for the parameters of log logistic regression 

model in future. 
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