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ABSTRACT

In a conservative system, energy equipartition results in a Boltzmann-Gibbs distribution. This is

also expected in an ergodic kinetic economy if wealth is conserved. Empirical data however has shown the
existence of a regime with a power law distribution. In models albeit with conservative wealth, we show that this

arises due to anomalous diffusion.
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INTRODUCTION

Income distributions are observed to have a robust
mixed distribution differentiating between the
lower income and higher income groups. The
distribution of income for the higher income group
seems to fit a power law. Among the first
observations of this is attributed to Pareto [1]. The
income distribution for lower income group has
been historically fitted to lognormal distributions,
which is attributed to Champernowne [2] who also
proposed a simple model describing the
interactions.

Patriaca et al. [3] have proposed the Gamma
distribution as a better fit for the lower income
group drawing analogy to thermodynamics of a
many body interacting system at equilibrium. It was
put forth by Charterjee et al. in [4] that the Pareto
exponent is observed to vary between 1 and 3 while
the higher income group usually consists of less
than 10% of the population. A recent review of the
field was presented by Yakovenko et al. [12].

STATISTICAL MECHANICS OF
INCOME/WEALTH DISTRIBUTIONS

It has been noted since Pareto that the distribution
of income for the higher income group can be fitted
to a power law. The distribution of income for the
lower income group however has been fitted as
either a lognormal distribution by Simon [5] and
later by Montroll and Shlesinger [6] or as a
Boltzmann-Gibbs distribution by Chatterjee [4] and
Dragulescu [7]. Physicists attempting to model
economic behavior adopt the analogy of large
systems of interacting particles as seen in the
kinetic theory of gases.
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They hypothesized that the regular patterns
observed in income and wealth distribution is due
to a natural law for the statistical properties of
many body systems interacting as an economy
analogous to gases and liquids. Thus the description
of an economy as a thermodynamic system allows
the identification of the income distribution as the
distribution of energy levels of particles in a gas.

The Boltzmann-Gibbs distribution states that the
probability of finding a physical system in a state

with energy is € given by
P€ =ce” )

where c is the normalizing constant and T is the
temperature.

In [7], the argument was that a many body
interacting system such as the economy can be
described by the Boltzmann-Gibbs distribution by
choosing the conserved quantity as money. The
process is described by the relation

m',=m, —Am
(2)

m'j =m, +Am
(3)

where agents i and j complete a transaction with the
total amount of money before and after the
transaction conserved.

The resultant wealth distribution from the
interactions in (2) and (3) is able to account for the
Boltzmann-Gibbs distribution. The trading model
in [4] allows a distribution of wealth with a mixed
distribution as observed in empirical data. The
model is based on the assumptions made by
Dragulescu [7], particularly conservation of money
during a trade. The rules of trading can be written
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diffusion of money across the United States. This
observation has motivated us to study the diffusion
of money in trading models. This was because of
the observation by Brockmann as elaborated before,
that the spatial inhomogeneities existing in a real
economy in the form of geographical location and
socioeconomic factors such as population density
between geographic locations, will result in the
observation of Levy flights in money displacement
as well as long waiting times of money in a
location.

A trading model is a suitable candidate for these
observations to occur as the nature of a trading
model, based on well defined trading rules will
result in both a trapping of money with specific
agents as well as more vibrant moving money with
other agents. The Chakrabarti trading model is a
suitable candidate to study anomalous diffusion in a
trading model as the occurrence of long waiting
times will naturally happen due to the existence of
agents who have large saving propensities.

These agents will hold on to monies for longer
periods of times due to its propensity to save more
and trade less.

The Chakrabarti trading model has to be modified
to allow proper calculations of jump lengths and
waiting times. Only then can we attempt to perform
diffusion analysis.

As the paradigm for our study is oriented towards
the money in the trading model, we have to clearly
define a path the money will flow to and also a
proper mechanism to track the money's position and
time at each location throughout the trading
process. For the path the money will flow to, the
clearly defined path will be determined by the
agents trading money from one to another.

We have predetermined that agents can only trade
with its immediate neighbors. In order to properly
simulate this action, we firstly define a suitable
lattice size of agents. Since our goal is to determine
if the displacement is scale free, our lattice size
must be at least 3 orders of magnitude in length.
The lattice size is simply our definition of the area
populated by the agents.

Once we have determined the lattice size we have
to randomly choose an agent to perform a trade.
This agent can only trade with its nearest neighbor.
The definition of these neighbors is dependent on
where the agent is located. There are three locations
which determine who are the neighbors of an agent.
These locations are the edges, the corners and the
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main lattices.

Since we want to study the diffusion of money, we
have to know its location and time during each
trade. In programming terms, this is accomplished
by saving into an array a money's owners. Thus as
the trading process goes on and money changes
hands, the previous owners of a money will be
noted and since we have defined the agents position
as the spatial variable we have knowledge of the
money's trajectory.

Similarly after a trade, the current iteration time
will be saved into an array. Thus we currently have
knowledge of time between one trade and another
which allows us to calculate the waiting time
between trades.

Now that we have stated the modifications we have
made to track the money's position and time
throughout the trading process, we can
subsequently determine the displacements of each
money in the system after a given period of time
and also the waiting times between trades.

To calculate the displacements, we have to know
after a certain period of time where the money
currently is and what was it's original position.

We then make use of the determination of distance
by applying the Pythagoras theorem. After we have
obtained data that will allow us to plot the
distribution of displacement, we want to obtain data
that will allow us to plot the waiting time
distribution. This is done by simply finding the time
difference between successive jumps of money
from one agent to another.

This data will then be sorted into bins in order to
plot a distribution of waiting time. This is done by
simply conducting a census of frequency of a
waiting time over the entire waiting.

RESULTS AND DISCUSSION

In this section, we present the resultant PDF of
displacement and its subsequent data analysis. We
firstly present presenting a few PDFs of
displacement after 4000 million iterations in the
Figure 1.

As was reported by Brockmann, displacement
between 1 to 10 units is also seen to scale linearly.
This means there is an exponential growth in
displacement during this range. Brockmann
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