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ABSTRACT Consider the linear models of which the distributions of the errors are non-normal. We propose a 
method based on rank statistics for constructing confidence intervals for the parameters in the linear models. It is 
found that the proposed confidence intervals have coverage probabilities which are fairly close to the target value. 
Furthermore when the skewness of the distributions is large, the expected lengths of the proposed confidence 
intervals are found to be much shorter than those of the percentile bootstrap confidence intervals, and the classical 
confidence intervals which are derived by assuming that the errors are normally distributed. 
 
ABSTRAK Pertimbangkan model linear dengan ralat yang bertaburan tak normal. Kita mencadangkan satu 
kaedah berasaskan statistik pangkat untuk membina selang keyakinan bagi parameter dalam model linear. Didapati 
kaedah yang dicadangkan mempunyai kebarangkalian liputan yang menghampiri nilai sasaran. Tambahan pula, 
apabila nilai kepincangan taburan adalah besar, kaedah yang dicadangkan  menghasilkan selang keyakinan yang 
mempunyai panjang jangkaan  yang jauh lebih pendek daripada selang keyakinan yang berdasarkan kaedah 
“bootstrap” persentil, dan kaedah klasikal yang mengandaikan bahawa taburan ralatnya adalah normal. 
 
(Keywords: Bootstrap; Confidence intervals; Linear Regression; Quadratic-normal distribution. 
 

INTRODUCTION 
 

Consider the linear regression model which can be 
represented in the form 

εxxxxy   pppp  )1(11100        (1)                                                          

where T
nyyy )( 21 y  is the vector of 

observations, ][ 10 pxxxX   is the matrix of 

explanatory variables, T
p )( 10  β  is the 

parameter vector, T
n )( 21  ε  is the vector 

of random errors, and n ,,, 21   are independent 
and having the common cumulative distribution 
function(c.d.f) (.)G . 
 
When i  has a normal distribution with mean 0 and 

variance 2 , the usual 100 )1(  % classical 
confidence interval for the individual parameter i  
in Equation (1) is given by 

}ˆˆ:{ ˆ)1(,2ˆ)1(,2
ii

StSt pniipnii       (2) 

where i̂  is the least squares estimate of i , 

)1(,2  pnt  is the %100)2/1(   point of the t -
distribution with ( ))1(  pn  degrees of freedom 

(df),   
ˆ2/11,1

ˆ
 iiaS

i
  is the standard error of i̂ ,  

 

 
1,1  iia  is the )1,1(  ii  entry of 1X)(XT , and 

))1(/(ˆ 2   pnTTT ]yXX)X(X[Iy 1  is the 
residual mean square. 
 
Apart from the classical confidence interval, there are 
many other confidence intervals which have been 
proposed in the literature for the individual parameter 
in the linear model with non-normal errors. A well-
known method based on transformation of the 
response variables is given [4]. An alternative way of 
constructing confidence interval is by means of 
bootstrap [2], [3], [6], [7] and [12]. In performing the 
bootstrap for finding confidence interval, usually a 
large number N  of estimates of the parameter i  
are calculated based on the N  samples obtained 
through resampling. The estimates for i  required in 
the bootstrap method may either be the ordinary least 
squares estimates or other types of estimates like the 
linear plus quadratic (LPQ) estimates [9] and [10] 
and  the estimates based on EM algorithm [5]. 
 
Another alternative way of constructing confidence 
interval is by collecting the values )0(

i  of the 
parameter i  for which the null hypothesis 

)0(
0 : iiH    is accepted. A way to test the null 

hypothesis that a particular parameter in β  is equal to 
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zero is by using the statistics based on the ranks of 
residuals [1]. 
 
Presently, we first propose a rank test statistic for 
testing the null hypothesis )0(

0 : iiH    and 
construct the confidence interval given by 
 accepted is  that : )0(

0 iii H   .  
 
In the case of normal errors, it is found that the 
confidence interval based on rank statistic is 
comparable to the classical confidence interval and 
percentile bootstrap confidence interval in terms of 
both coverage probability and expected length. When 
the errors have a skewed distribution, the coverage 
probabilities for the above three types of confidence 
intervals are all fairly close to the target value, but the 
expected length for the confidence interval based on 
rank statistic is much shorter than those of the 
classical confidence interval and percentile bootstrap 
confidence interval.  
 
CONFIDENCE INTERVAL BASED ON RANKS 

WHEN ERRORS ARE NON-NORMALLY 
DISTRIBUTED 

 
In this section, we introduce a method based on ranks 
for finding confidence interval for the parameter j  
when the unknown cumulative distribution function 
(c.d.f) (.)G of the random errors is continuous. This 
method will make use of the quadratic-normal 
distribution. An introduction to the quadratic-normal 
distribution is as follows: 
 
Suppose the random variable i  can be expressed as 













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32
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


 , ni ,,2,1  .(3) 

In the Equation (3), )1,0(~ Nei  and 
T),,( 321 λ  is a vector of constants [13]. The 

random variable i  is said to have a quadratic-
normal distribution with parameters 0 and λ  
( )),0(~ λQNi . The following are some basic 
results [13] regarding the quadratic-normal 
distribution. 
 
The constants i  should be such that i  given by 
Equation (3) is a one-to-one function of ie . If the 
function i  has one or more turning points, then the 
value of λ  should be such that these points should 

occur outside the range qi Ze   ( 0q  is a small 

value and  qZ  is the %100)1( q  point of the 
standard normal distribution). By examining the 
extreme values of i , it can be shown that there are 
no turning points when qi Ze   provided that 

qZ )2/( 321   when 0)2/( 321    and 

qZ )2/( 21   when 0)2/( 21   .  
 
Let )( k

ik Em  , 41  k . Next let 23
233 }{mmm   

and  2
244 }{mmm  be respectively the measures of 

skewness and kurtosis of the quadratic-normal 
distribution. The set   of all possible values of 

),( 43 mm for which i  is either a one-to-one function 
or one of which 001.0q  may be represented 
approximately by the shaded region in Figure 1. 
 
A similar transformation introduced by Fleishman [8] 
takes the form 32

iiii decebea   where cba ,,  
and d  are constants. The corresponding ranges of 

3m  and 4m  are approximately ]82.1,82.1[  and 
]22.8,32.2[  respectively. Compared to the 

transformation of Fleishman, Equation (3) gives a 
bigger set of possible values of ),( 43 mm .  
 
Without loss of generality, we may assume that p  
is the parameter of interest. To find a confidence 
interval for the parameter p , we may first let )0(

p  
be a constant and solve the problem of testing the 
null hypothesis )0(

0 : ppH    against the alternative 

hypothesis )0(
1 : ppH   . 

 
The model in Equation (1) may first be written as  

εxβXxyy  ppppp
m )( )0()1(

1
)0()(      (4)    

where   
 ][ 1101  pxxxX   
and 
  T

p )( 110
)1(

  β  .  
 
Let )(

1
1

11
)1( )(ˆ mTT yXXXβ   be the least squares 

estimate of the parameter )1(β  in model 
εβXy  )1(

1
)(m  when 0H  is true. Then from 

Equation (4), we may write   
εxβXy  ppp

m )(ˆ )0()1(
1

)(  .                     (5) 
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From Equation (5), we see that  
)ˆ()(~ )1(

1
)(1 βXyxxx   mT

pp
T
pT                                  (6) 

will tend to be near zero under 0H .  

Let  Rxxx T
pp

T
pT 1)(                                      (7) 

where   TnRRR 21R  and iR  is the rank of 

the i th component in )1(
1

)( β̂Xy m  when the n  

components in )1(
1

)( β̂Xy m  are arranged in an 
ascending order. 

Then, a two-tail acceptance region }:{ UTLT   
may be used to test 0H  at the   level. As the c.d.f 

(.)G of the random errors is unknown, theoretically 
we cannot find the end points L  andU . However, 
we may attempt to find L  and U  for each member 
in a wide class of distributions and show that there 
exist two constants *L  and *U  such that *LL  , 

*UU   for most of the distributions in this class.

Figure 1. The shaded region represents all possible values of ),( 43 mm  
 
Let ),0( λQN  denote a quadratic-normal distribution 
of which the variance is equal to 1. The parameter λ  
of a quadratic-normal distribution with variance 2  
can be expressed in terms of λ  as shown below: 
 ii   ,  2,1i , 33   . 
 
Presently, we consider the class of quadratic-normal 
distribution with parameters 0  and T),,( 321 λ  
such that the corresponding ),( 43 mm . The 

process to find *L  and *U  is as follows. 
    
Let the values of )0()1(

1 ,, pβX  and   be given. 

Firstly we select the values of ),( 43 mm  from the 
shaded region  such that for ),( 43 mm not in the 
boundary of  , the values of 3m  are in equal steps 
of size 0.1 while those of 4m  are in equal steps of 
size 0.2. The total number of such chosen values of  

),( 43 mm  turns out to be 2616M . Let )( jλ  be the 
value of parameter vector which corresponds to the 
j -th selected value. We generate N  values of y  

using the equation  
  εβXy  )1(

1 , 
where n ,,, 21   are independent, 

),0(~ )( j
i QN λ , and )( jλ  is given by 

)()( j
i

j
i   , 2,1i , )(

3
)(

3
jj   . 

 
We note that the value of  )1(

1
)( β̂Xy m  in Equation 

(6) will be changed to )ˆ( )1(
1

)( βXy mc  if we change 
the value of   to c . However, the value of R  in 
Equation (7) will remain the same when the value of 
  is changed. Thus, the values of )( jL  and )( jU  
will remain the same if we change the value of   to 
other values. 
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For each generated value of y , we compute the value 

of T  (see Equation (7)) and estimate the values )( jL  
and )( jU  such that  
 2)()( )()(  jj UTPLTP . 
 

Consider the case when 1p  and 30n . When the 

histogram for the M  values of )( jL (or )( jU ) are 
plotted (see Figures 2 and 3), we see that the spread 
of the lower limit )( jL  of the acceptance region (or 
the upper limit )( jU  of the acceptance region) is very 
small. 

Figure 2.  Histogram for 2616M  values of )( jL   
 
  

Figure 3.  Histogram for 2616M  values of )( jU  
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Let (*L  or *U ) be the average value of the M  

values )()2()1( ,,, MLLL   ( or ),,, )()2()1( MUUU  . 

Furthermore, let )|( )(**)( jj UTLPA λ   be the 

probability evaluated at )( jλ  of the acceptance region 
],[ ** UL . 

 
When 1p  and 30n , the histogram for the M  

values of )( jA  is shown in Figure 4. The histogram 
shows that the spread of )( jA is fairly small. The 
acceptance region }:{ ** UTLT   may thus be 

used to test )0(
0 : ppH    at the   level. The above 

method for finding the acceptance region based on 
the rank test statistics is similar to that described in 
[11] which uses rank test statistic for testing the 
interaction in a two way layout. 
 
A confidence interval for p  is now given by 

 accepted is  that :)( )0(
0

)0(
ppp H  y ,  

and the coverage probability of the confidence 
interval is 

)|)(( )()( j
p

j PP λλy   . 
 

 
Figure 4.  Histogram for 2616M  values of )( jA  
 

NUMERICAL RESULTS 
 

To estimate the coverage probabilities of the 
confidence intervals in Sections 1 and 2, we first 
generate N  values of  y . For each generated value 
of y , we find the classical confidence interval, 
percentile bootstrap confidence interval and 
confidence interval based on ranks. We next use the 
proportion p̂ of y  (out of N  values of y ) of which 
the corresponding confidence interval covers the true 
value of p . The value of p̂  is then an estimate of 

the coverage probability. The results for p̂  are 
shown in Tables 1 and 2. 
 

The value of )0.3,0.0(),( 43 mm  in Tables 1 and 2 

corresponds to the case when )1,0,( 1  Tλ . 

Equation (3) shows that i  then has a normal 
distribution. The remaining five values of ),( 43 mm  
appearing in Tables 1 to 2 correspond respectively to 
the cases when the values of 

},)/(,)/({ 3
21

22
21

21  mmT λ  for 21
2 )/(mi  are 

equal to )0.1,07269.0,11551.1(  ,  
)0.1,12745.0,792009.0( 

)60584.0,503374.0,305646.0(  ,
)19564.0,76962.0,144808.0(  and 

)07203.0,875607.0,005644.0(  . The third value 
)0.4,0.0(  for ),( 43 mm  corresponds to the case 



Malaysian Journal of Science 28 (3): 299 – 307 (2009) 
 

304 
 

when i  is symmetrical but having narrow waist. 
The last three values for ),( 43 mm  correspond to the 
cases when i  is skewed to the right and having large 
kurtosis. 

 
Tables 1 and 2 show that when i  has a normal 
distribution, the coverage probabilities and expected 
lengths of the confidence intervals found by using the 
methods in Sections 1 and 2 are comparable. When 
the distributions of the errors are non-normal, the 
coverage probabilities of the three types of 
confidence intervals considered are still comparable 
and close to the target value 0.95. However, the 
expected lengths of the confidence intervals based on 
rank statistics are much shorter than those of the 
bootstrap and classical confidence intervals when the 
distributions of the errors are skewed.  

To have an insight into the three types of confidence 
intervals, we plot 100 simulated confidence intervals 
for 1  in Figures 5 to 7. In the figures, the upper 
limits of the 100 confidence intervals based on rank 
statistics have been arranged in an ascending order. 
We see from Figure 5 that the end points of the 
confidence intervals based on rank statistics are fairly 
similar to those of the classical confidence intervals.  
Figures 6 and 7 show that in the case when the 
distribution of the errors is skewed, the three types of 
confidence intervals cover the true value 3 of 1  for 
97-98% of the time. These figures also show how 
much shorter could the confidence interval based on 
rank statistics be in comparison with the bootstrap 
and classical confidence intervals.  

 
Table 1. Coverage probabilities and expected lengths of confidence intervals for 1 when 1p , 30n ; ixi  , 

301  i ; 20  ,  31  , 1  and 05.0 . 
5000( N , standard error of coverage probability  0.003)  

No 3m  4m  CP.RK CP.Bt CP.CL EL.RK EL.Bt EL.CL 
1 0 2.6 0.9500 0.9394 0.9526 0.088 0.082 0.086 
2 0 3.0 0.9492 0.9380 0.9528 0.087 0.082 0.086 
3 0 4.0 0.9460 0.9398 0.9528 0.083 0.082 0.085 
4 1.0 9.0 0.9511 0.9416 0.9561 0.067 0.083 0.083 
5 3.0 20.0 0.9494 0.9284 0.9560 0.051 0.084 0.082 
6 3.8 24.5 0.9381 0.9328 0.9547 0.032 0.084 0.075 
 
Table 2. Coverage probabilities and expected lengths of confidence intervals for 1  when ,1p  40n ; ixi  , 

401  i ; 20  , 31  , 1 and 05.0 . 
5000( N , standard error of coverage probability  0.003)  

No 3m  4m  CP.RK CP.Bt CP.CL EL.RK EL.Bt EL.CL 
1 0 2.6 0.9424 0.9396 0.9458 0.058 0.053 0.055 
2 0 3.0 0.9422 0.9398 0.9460 0.056 0.053 0.055 
3 0 4.0 0.9424 0.9404 0.9460 0.053 0.053 0.055 
4 1.0 9.0 0.9423 0.9436 0.9504 0.043 0.053 0.054 
5 3.0 20.0 0.9407 0.9340 0.9542 0.031 0.054 0.053 
6 3.8 24.5 0.9419 0.9364 0.9590 0.018 0.054 0.048 
In Tables 1 and 2, 
CP.RK = Coverage probability of confidence interval based on rank statistic;  
CP.Bt = Coverage probability of bootstrap confidence interval;  
CP.CL = Coverage probability of classical confidence interval;  
EL.RK = Expected length of confidence interval based on rank statistic; 
EL.Bt = Expected length of bootstrap confidence interval;    
EL.CL = Expected length of classical confidence interval. 
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Figure 5. 100 simulated confidence intervals for 1  when 03 m , 0.34 m ; 1p , 30n ; ixi  , 

301  i ; 20  , 31   , 1  and 05.0 . 
 

Figure 6. 100 simulated confidence intervals for 1  when 8.33 m , 5.244 m ; 1p , 30n ; ixi  , 
301  i ; 20  , 31   , 1  and 05.0 . 
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Figure 7. 100 simulated confidence intervals for 1  when 8.33 m , 5.244 m ; 1p , 30n ; ixi  , 
301  i ; 20  , 31   , 1  and 05.0 . 

 
CONCLUSIONS 

 
The proposed method based on rank statistics for 
finding confidence intervals for the individual 
parameters can be applied for a wide range of 
distributions of the errors. An obvious advantage of 
the proposed confidence interval is its shorter 
expected length when the errors have a skewed 
distribution. 
 
It is expected that the end points *L  and *U  of the 
acceptance region in Section 2 would depend on the 
matrix 1X  when 2p . Thus, future research may 
be carried out to devise efficient methods for finding 
the end points when the value of 1X  is given. 
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