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ABSTRACT  Two of the main problems in constructing a control chart for detecting shifts in process
variation are to estimate the process variation based on preliminary samples taken from the process and to
evaluate ifs control limits. The unknown process variation is generally estimated from either the sample
standard deviations or ranges of the preliminary samples, These classical estimates of process variation
are highly sensitive to the presence of contaminated data in the preliminary samples and subsequently
reduce the power of control charts in detecting assignable causes. The 3-sigma control limits of the
Shewhart control charts are evaluated based on the assumption that the sample statistic being plotted is
Gaussian distributed. However, the sampling distributions of the sample standard deviation and range are
skewed even if the samples are taken from a Gaussian population. The aims of this paper are (i) to discuss
robust estimates of scale parameter from preliminary samples taken from the process under study, and (ii)
to construct control charts with probability limits evaluated using robust estimators that are resistance to
contaminated preliminary samples.

ABSTRAK Dua masalah utama dalam pembinaan carta kawalan bagi mengesan perubahan dalam
serakan proses adalah menganggar serakan proses berasaskan sampel awalan yang diambil dari proses,
dan menentukan had kawalannya. Lazimnya, serakan proses yang tidak diketahui diukur dengan sisihan
piawai atau julat sampel awalan. Penganggar klasik bagi serakan proses adalah sangat sensitif kepada
kewujudan data tercemar dalam sampel awalan, dan seterusnya mengurangkan kuasa carta kawalan dalam
mengesan penyebab umpukan Carta kawalan 3-sigma untuk carta kawalan Shewhart ditentukan
berdasarkan andaian bahawa sampel statistik yang dikaji adalah bertaburan Gaussian. Bagaimanapun,
taburan pensampelan bagi sisihan piawai sampel dan julat sampel adalah pencong walaupun sampel
dipilih dari populasi Gaussian. Tujuan kertas ini adalah (i) membincang penganggar kukuh bagi
parameter skel dari sampel awalan yang diambil dari proses dikaji, dan (ii) membina carta kawalan
dengan had kebarangkalian yang dinilai dengan menggunakan penganggar kukuh yang mempunyai
rintangan terhadap sampel awalan tercemar.

(Robust estimator, robust control chart, asymmetric control limits)

INTRODUCTION standard Shewhart control chart for the sample
statistic w are given as

Control chart is a basic tool in statistical process
control for detecting shifts in process mean and UCL, =p, +Lo,
variation, The standard Shewhart control charts
are constructed under the normality assumption.
Letwbea sample statistic that measures a quality
characteristic of interest in the process under

-study, and let that the mean of w be 4, and the where the factor L is usually taken to be 3.0
irrespective of the distribution of w. However, the

stand iati X AP
lin a}rld deviation of w be o, The.n t.he center sampling distributions of the sample range and
¢, the upper and lower control limits of the sample standard deviation are fairly skewed, even

CLW = Hy
LCLW =Hy,— LO’W
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for samples taken from a Gaussian distribution,
thus the control limits of the R-chart and s-chart
set at plus and minus L standard deviations of its
mean value are inappropriate. It has been pointed
out that for highly skewed process, samples of
size four or five are not sufficient to satisfy the
normality assumption of the sample mean [1].
The study in [2] also concluded that the false
alarm rate of out-of-control signals would be
greatly increased if the normality assumption of
the sample mean is violated. To avoid this
drawback, one should construct the Shewhart
charts using the asymumetric probability limits
instead of the 3-sigma control limits. The
construction of s and R charts with asymumetric
probability limits, evaluated based on additional
knowledge on the distribution of the process
under study, are available and can be found in [3,
4, 5].

Another problem of the Shewhart control chatts
that have attracted a lot of attention lately is on
the estimation of the unknown process mean u

and standard deviation ¢ . In most applications,
the location and scale parameters are estimated
from preliminary subgroups taken from the
process under study when it is operating in the
state af statistical control with only chance causes
of wvariation present. The most widely used
estimator of the location parameter is the average
of the m sample means evaluated from the m
preliminary subgroups. The scale parameter is
usually estimated based on the average of the m
sample ranges, the average of the m sample
standard deviations or the square of the average
of the m sample variances. However, these
classical unbiased estimates of location and scale
parameters are greatly affected by the presence of
contaminated and outlying data in the preliminary
samples. An inflated estimate of & would result
in wider control limits and subsequently reduces
the power of control chart in detecting out-of-
control signals. A deflated estimate of ¢ would
result in shorter control limits that lead to higher
false alarm rate of detecting assignable causes.
To avoid this drawback, an alternative is fo
construct a control chart based on a sample
statistic (e.g. sample mean, standard deviation or
range) that is sensitive to out-of-control signal,
however, with its control limits evaluated using
robust estimators that are resistant to
contaminated sample data. A good robust
estimator is efficient and resistant. High
efficiency implies that the sampling distribution
of the estimator has small variance even when we
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are sampling from a non-normal distribution. An
estimator is resistant if small changes in some of
the sample data or large changes in a few of the
data values have a small effect on its estimate
value.

The aims of this paper are (i) to discuss robust
estimates of scale parameter from preliminary
samples taken from the process under study, and
{ii) to construct control charts with probability
limits evaluated using robust estimators that are
resistance to contaminated preliminary samples.
The construction of s, R and X charts with
probability limits evaluated from samples taken
from the Gaussian and selected non-Gaussian
populations are discussed in Section 2. Some well
develop robust scale estimators for the Gaussian
and exponential distributions, as well as a
resistant biweight estimator that can be used to
estimate the scale parameter of a family of
location-scale populations are discussed in
Section 3. Our simulation study reveals that
control charts with resistant probability limits
outperform that constructed with the classical
non-resistant  scale  estimator when the
preliminary samples are contaminated. To avoid
lengthy discussions, we only report the
performance of the s-chart with robust probability
limits in Section 4.

SHEWHART CONTROL CHARTS WITH
PROBABILITY LIMITS

For a process with known scale parameter o, the
center line and (1- «)100% probability limits of
the s-chart for samples of size » are defined as

UCL.S‘ = Bl:aff'Z;uo-
CL, =c,0
LCLS = Ba."Z;uo-

and that of the R-chart are given as

UCLR = Dl—a/Z;uO-
CLR = d”O’
LCLR = Da’."Z;JrO-

where B,, is the pth percentage point of
V=sio and ¢,=EV) ; D,,

percentage point of the relative sample range
U=R/c and d, = E(U}.

is the pth
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For samples taken from the exponential, Laplace
or logistic distributions, the values of B 44145,

Bggges,, and ¢, are given in [4], whereas the

values of Dggys.y » Dosgesn and d, are given in

[5] for selected sample size n. For the case when
samples are taken from the Gaussian distribution,
the selected percentage points of R/o can be
obtained from the tables given in [6], whereas the
(cx/2)th and (1- ¢ /2)th percentage points of

sio are
BafZ;rr = \,‘ X;IZ;H—I /(I’i _1)
and

2
Bl—afl;n = JZ[-Q,IQ;”,I /(1’1 - 1)

respectively. These values of B's and D's are
larger than the corresponding factor values of the
classical s and R charts constructed with 3-sigma
control limits under the normality assumption. A
salient feature of these two control charts is that
its lower probability limits LCL, and LCL, are

positive even Tor sample of size two to five,

For a process with known mean g and variance

o?, the center line and probability limits of the
X -chart for samples of size n are given as

UCLE =+ Ll—a;’2;u (O—/'\/;)
Cly =
LCLE =M LaIZ;u (O—’r'\/;)
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where L, .5, and L, are control factors

that depend on the sampling distribution of the
sample mean and a specified false alarm rate of
a . For samples taken from the Gaussian

N(u,0*) distribution, the values of L,z
and Ly, corresponding to o =0.0027 are both

taken to be 3.0 irrespective of the value of n.
For samples taken from the Laplace(d,f7)

distribution with mean = 8 and o =+/24, the

control factors L,, are taken to be the pth

percentage point of the sampling distribution of
its sample mean which is distributed as the
difference of two IID gamma random variables
with shape parameter # and scale parameter §/xn.

For sample taken from the Gamma(fB,v)
distribution with mean g =vf and standard

deviation & = ﬂ\/;, the control factors are given
in [7] as L 455 =(Clops2 [Nnv)—+nv and

Lyiom =nv —(G, /Wnv) where G, is the
pth percentage point of a gamma distribution
with shape parameter nv and scale parameter
equal to 1. The values of L_,,,,, and L, for
sample of size n taken from the Laplace and
exponential distributions are given in Table 1 for
n=2(1)20 and 50. Examination of Table 1
reveals that for samples of size as large as 50
taken from the Laplace or the exponential
distributions, the values of L;_,;5, and Ly,
are not close to its corresponding value of 3.0 as
expected under the normality assumption.
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Table 1.

Factors for constructing the 99.73% probability limits of the X chart for samples of size 5

taken from the Laplace distribution or exponential distribution

LAPLACE EXPONENTIAL LAPLACE EXPONENTIAL

DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION

H Lootasn = Loogssin Looiasn  Loogesin n Lonasa = Lgoagsn Looss  Lovsssiy
2 3.7347 1.1494  5.1067 12 3.1685 2.1584 3.8720
3 3.5422 14217 47317 i3 31567 2.1902  3.8378
4 34322 1.6034  4.5042 14 3.1465 22185 3.8074
5 3.3603 1.7348 43476 15 3.1375 2.2440  3.7800
6 3.3094 1.8325 4.2313 16 3.1295 2.2672  3.7552
7 3.2713 1.9150 4.1407 17 31224 22883  3.7326
8 3.2417 1.9804 4.0674 18 3.1161 23078 37119
9 3.2179 2.0353  4.0066 19 31104 2.3257  3.6929
10 3.1985 2.0822 3.9551 20 31052 2.3423  3.6754
11 3.1823 21228 319107 50 3.0437 2.5802 3.4266

SOME ROBUST AND RESISTANT SCALE
ESTIMATORS

It is well established that a robust estimator is
able to perform well for its intended purpose even
if the underlying assumptions on which it is
based are violated [8]. A robust estimator is
resistance if it is affected to only a limited extent
by the presence of contaminated data or outlying
observations. Ideally outlying observations
should first be identified using formal hypothesis
testing procedures [9] or graphical procedures
[10]. However, the outlier detection procedures
are in general incapable of detecting sniall
changes in contaminated sample. Therefore in the
event that the process standard deviation o is
not available when constructing a control chart,
one should estimate the unknown o by using
resistant scale estimators that are able to
accommodate and reduce the influence of
contaminated data and outlying observations.

There are many robust estimators of location and
scale parameters. Some of the widely used robust
location estimators are the median, trimmed
mean and M-estimator. An efficient median
estimator defined as the weighted sum of ordered
sample data with symmetric weights has also
been discussed [11]. In this paper, we shall focus
on the effect of the resistant scale parameter on
the performance of the control charts. Three of
the commonly used robust scale estimators are
the median absolute deviation about the median
(MAD) [12], the §, and QO estimators [13]. For

sample of size #, these estimators are defined as
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MAD = b, Med (| x; - Med ;x; i, j=12,...,n)
S, =s,Med;{Med (| x, —x; Wi A j=12,0
¢=q,x —x; i< ji j=12,..,n),

where ()k is the k-th order statistic of the
interpoint distances |x; - x;| with k=C2/4 |
The constants b, , s, and g, are correction

factors chosen to ensure that the respective
estimator is unbiased to the scale parameter o .
For large Gaussian sample, these correction
factors are taken to be b, =1.4826, 5, =1.1926

and ¢, =22219 [13]. For large exponential
sample, they are taken to be s, =1.6982 and
4, =3.476 [14]. For finite Gaussian sample of

size n, approximate values of these correction
factors are also available in [14]. These three
estimators have the highest possible breakdown
point of 50%, ie. the estimate of the scale
patameter ¢ remains bounded when fewer than
50% of the data points are replaced by arbitrary
values. In contrast, the commonly used sample
range and sample standard deviation have
breakdown point of 0%.

In constructing control charts, a common
approach is to estimate the process variability
based on preliminary samples taken during a trial
period when the process is operating under the
state of statistical control. A robust scale
estimator that estimates the process standard
deviation based on m preliminary Gaussian
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samples was proposed in [15] using the biweight
A-estimator [16]. Let Med(x,;) and IOR, be

the median and interquartile range of the kth
sample with n data x;,,x;,,...,%;, , the scale

estimator in [15] is defined as

- qi/2
Z Z yrll-ug )
« N L ko Ly <l ]
S = 2 2 )
Z Z (1 —atp ;)= 5uj )
ki <l

where N =mn when n is even, N=m(n-1)
when # is odd, u,; = Ay, ;/eMADy in which ¢

is a constant that lies in the range 6 to 12,
MAD, is the MAD of the N median-centered

subsample values y; ; = x, ; — Med,(x, ;) , and

1, E, <45
c, E,>75

with £, = IQR, I MAD,, . Note that for Gaussian
samples with large sample size, we have
E(MAD) ~ %o, thus an estimator S- with ¢ =9
implies that observations with magnitude more
than %(9) =6 standard deviations away from the
median will not be included in the sum of

equation (1). The process standard deviation o
is then estimated as

Se=8,1dype 3)

whete d,, . is a comection factor chosen to

ensure that £(S,) = o. The cutoff values of E,
in equation (2) were determined under the
normality assumption by the authors via

simulation studies. The values of d,, , . are given

in Table 2 for ¢ =7 and selected values of » and
.

A drawback of the estimator S, is that in
computing u, ; , the constant ¢ and the cutoff

values of £, cannot be determined analytically

under the hypothesized distribution. To overcome
this drawback, we propose an alternative
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estimator, denoted S;ax, defined as in (1) but

with its relative deviation u,; replaced by

Med:‘(xk,r') — X

s . < M d' i
Med () —LF,* ks <M i(Xk0)

uk .=
! X — Med (x, .
& (i) s Xy > Med(x, ;)
UFy — Med,(x; ;) | |
where LFk = xl:n - kn'(xu:n - xn’:n) and

UFR = Xien +ku (xu:n _II:JI) in which Xt and
X, are the Jower-fourth and upper-fourth of the
kth sample of size n. The values of £,, %, are

determined based on the requirement that for an
outlier-free random sample taken from the
hypothesized distribution, the probability that one
or more observations in the sample will be
wrongly classified as outliers is equal to a
prescribed small value @, [10]. The values of
k; =k, (=k) for sample taken from the standard
Gaussian distribution are given in Table 2 for
a, =0.01, 0.05 and selected sample size n. The

process standard deviation o is then estimated ag
*
Sbax =S8 box / Sn,m,ao (4)

where s, . is a correction factor chosen to
ensure that £(S;,)=0c. The values of s,,, .,

are given in Table 2 for e = 0.01 and 0.05, and
selected values of # and .

A salient feature of the estimator S, is that in
computing u; ;, the required values of &; and %,

can be evaluated explicitly not only for the
Gaussian distribution but also for the family of
location-scale distributions. For example, the
proposed estimator S, can be used to estimate
the scale parameter of the asymmetric Laplace,
logistic distributions and the asymmetric
exponential, extreme-value distributions. For
Gaussian and exponential samples of size 9 to
500, the values of k; and £, is givenin [10].
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PERFORMANCES OF THE ROBUST
SCALE ESTIMATORS

We shall now examine the performance of the
robust scale estimators on preliminary samples
taken from the following types of contaminated
Gaussian distributions.

Type 1: CN(p,a) distribution

Fach of the sample data has 100(1 - p)%
probability of being drawn from the ~(0,1)
distribution and 100p% probability of being

drawn from the N(0,a%) distribution with @ >1.

Type 2: CSlash{p) distribution

Tach of the sample data has 100(1- p)%
probability of being drawn from a N(G1)
distribution and 100p% probability of being

drawn from the long tailed Slash distribution,
defined as the N(0,1) random variable divided

by an independent uniform random variable on
the interval (0,1).

Type 3: Cx*(p,c) distribution

Each of the sample data is drawn from the
N(0,]) distribution and has a 100p%
probability of adding to it a value ¢V, where ¥ is

drawn from the chi-square distribution with one
degree of freedom and ¢ is a positive constant
value. Note that ¢=0 corresponds to the
uncontaminated samples,

The CN(p,a) distribution has tails heavier than

that of the standard Gaussian distribution,
whereas the CSlasi(p) distribution has heavy

tails similarly to that of the Cauchy distribution.
The Cy?(p,e) is a standard Gaussian

distribution contaminated by a chi-square
distribution with a long right tail. Tables 3 and 4
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give the average values of 5/c,, @, S,, Sy
S, and MAD evaluated based on 100,000
replications of m samples of size n taken from the
uncontaminated AN(0,1} distribution, and the

abovementioned contaminated Gaussian
distributions, The values in bold and italic are the
mean absolute deviation between the estimates of
the scale parameter o and its hypothesized value
o=1.

Examination of Table 3 reveals that, based on
m =200 preliminary samples, the non-robust
estimator 5/c, of o used in constructing the
control charts is more sensitive to heavy-tailed
distributions than are the robust estimators. For
example, for samples of size n = 20, the average
value of §/¢, is 13340 for the
Cz*(p,c) distribution and 5.6148 for the
CSlash(p) distribution when p=0.05 and
¢ =13.0, whereas the respective average values of
§yoy are 1.0231 and 1.0221. Table 3 also reveals
that the robust estimators, in particular the S,
and §,,, estimators, have the smallest mean

absolute deviation wvalues (in bold, italic and
underlined) amongst the estimators considered
for samples of size n=10 and n =20 taken

from the contaminated CN(p,a), Cx?(p,e) and

CSlash(p) distributions with p =0.02, 0.05 and
0.10, and a=c=3. Table 4 shows that §,,
remains the most efficient and resistant scale
estimator when the number of samples (of size
n =20) used in estimating the process standard
deviation reduce to m =50 . These two tables
also indicate that, as expected, 5/¢; has the
smallest mean absolute deviation when the
preliminary  samples are  uncontaminated
(Gaussian samples,
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Table 3.

Cotmparison of scale estimators for samples taken from uncontaminated or contaminated M0,1)

distributions. The entries are the average values obtained from 100,000 replications of m=200 preliminary
samples, each of size », generated from each of the distributions. The value in bold and italic are the mean
absolute deviation between the estimates of the scale parameter and its expected value o = 1. The
underlined values are the smallest mean absolute deviation amongst the estimators considered

SCALE SAMPLE SIZE »=10 SAMPLE SIZE n=20
p  ESTIMA- DISTRIBUTION, a=3.0 DISTRIBUTION, 4=3.0
TOR MO,1)_ CN(p.t) Cx'(p,a) CSlash(p) N(O,)) CN(p,a) Cy’(p,a) CSlash(p)

002  sbarc,  1.00004 1.05996 1.11539 1.88546  1.00014 1.06571 1.13833 2.07607
0.01348 0.05999 0.11539 0.88546  0.00925 0.06571 0.13833 1.07606
Q 1.00765 1.03503 1.03149 1.02831  1.00052 1.02547 1.02202 1.01924
0.01804 0.03617 0.03312 0.03040  0.01117 0.02594 0.02287 0.02051
S, 1.00004 101841 1.01448 1.01566  1.00010 101727 101121 1.01069
0.01502 0.02237 0.02077 0.02220  0.01005 0.01842 0.01400 0.01367
Shox 1.00006 102096 1.01384 101255  1.00012 1.01368 1.00872 1.00857
0.01518 0.02416 0.01968 0.01880  0.01140 0.01652 0.01370 0.01362
Su 0.99303 1.01507 1.01169 1.00955  0.99806 101858 1.01531 1.01332
0.01956 0.02303 0.02165 0.02070  0.01259 0.02057 0.01829 0.01703
MAD  1.00006 1.01866 1.01543 1.01384  1.00013 1.01682 1.01395 1.01252
0.02082 0.02630 0.02473 0.02393  0.01475 0.02062 0.01895 0.01818
0.05  sbarc,  1.00004 1.14734 128190 3.08679  1.00014 1.16014 133401 5.61484
0.01348 014734 0.28190 2.08681  0.00925 0.16013 0.33401 4.61482
Q 1.00765 1.07788 1.06875 106077 100052 1.06456 105532 1.04847
. 0.01804 007789 0.06877 0.06085  0.01117 0.06455 0.05532 0.04847
S. 1.00004 1.04822 1.03846 1.03919  1.00010 1.04516 102924 1.02751
0.01502 0.04843 0.03950 0.04054  0.01005 0.04516 0.02939 0.02772
Shox 1.00006 105515 1.03858 1.03259  1.00012 1.03593 1.02306 1.02215
0.01518 0.05523 0.03928 0.03365  0.01140 0.03603 0.02390 0.02310
S, 000303 1.04966 1.04107 1.03529  0.99806 1.05086 1.04216 1.03719
0.01956 0.05015 0.04220 0.03711  0.01259 0.05087 0.04223 0.03735
MAD  1.00006 1.04813 1.04043 1.03551  1.00013 1.04318 1.03576 1.03191
0.02082 0.04904 0.04212 0.03795  0.01475 0.04334 0.03623 0.03268
010 sbarc,  1.00004 128654 154269 498220 1.00014 130772 1.63318 6.65260
0.01348 0.28654 0.54270 3.98218  0.00925 0.30771 0.63318 5.65257
Q 1.00765 1.15357 1.13422 1.11765 100052 1.13360 1.11364 1.09969
0.01804 0.15356 0.13422 011765 0.01117 013360 0.11363 0.09969
S. 1.00004 1.10417 1.08377 1.08268  1.00010 1.09745 1.06319 1.05788
0.01502 010417 0.08379 0.08271  0.01005 0.09745 0.06320 0.05787
Shox 1.00006 1.12024 1.09418 1.07018  1.00012 107814 1.05111 1.04671
0.01518 0.12026 0.09418 0.07020  0.01140 0.07814 0.05112 0.04672
Sa 0.00303 1.11126 1.09276 1.08045 099806 1.10837 1.08959 1.07906
0.01956 0.11126 0.09277 0.08047  0.01259 0.10838 0.08959 0.07907
MAD  1.00006 1.10134 1.08619 107369  1.00013 1.09030 1.07537 1.06596
0.02082 0.10134 0.08622 0.07377  0.01475 0.09030 0.07538 0.06596
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Table4.  Comparison of scale estimators for samples taken from uncontaminated or contaminated N, 1)
distributions. The entries are the average values obtained from 100,000 replications of m preliminary
samples, each of size #=20, generated from each of the distributions. The value in bold and italic are the
mean absolute deviation between the estimates of the scale parameter and its expected value o = 1. The
underlined values are the smallest mean absolute deviation amongst the estimators considered

SCALE SAMPLE SIZE n=20 SAMPLE SIZE n=20
M  ESTIMA- DISTRIBUTION, p=0.05, a=3.0 DISTRIBUTION, p=0.10, a=3.0
TOR  NQ.l) CNpe) Cyl(p.a) CSlash(p) N©O,1) CN(p,a) Cy*(p,a) CSlash(p)

50 sbar/c, 1.00017 1.16009 1.33454 3.89222  1.00017 1.30756 1.63409 7.74112
0.01845 0.16009 0.33455 2.89223  0.01845 06.30755 0.63409 6.74117

Q 1.00056 1.06451 1.05544 1.04824  1.00056 1.13353 1.11381 1.09947
0.02236 0.06495 0.05635 0.04972  0.02236 0.13353 0.11382 0.09948
S, 1.00012 1.04515 1.02938 1.02735 1.00012 1.09751 1.06343 1.05764

0.02009 0.04646 0.03320 0.03170  0.02009 0.09753 0.06376 0.05812

Stox 1.00017 1.03585 1.02320 1.02195 1.00017 1.07801 1.05129 1.04661
0.02282 0.03979 0.03087 0.03012 0.02282 0.07828 0.05281 0.04856

Su 0.99810 1.05077 1.04236 1.03696 0.99810 1.10828 1.08983 1.07892
0.02512  0.05278 0.04574 0.04150 0.02512 0.10831 0.08998 0.07923

MAD 1.00018 1.04320 1.03600 1.03179  1.00018 1.09030 1.07571 1.06576
0.02952 0.04838 0.04324 0.04051  0.02952 0.09067 0.07661 0.06733

100 sbar/c, 100011 1.16021 1.33435 3.25007 1.00011 1230778 1.63355 6.77074
0.01305 0.16020 0.33435 225008 (.01305 0.30778 0.63355 5.77073

Q 1.00051 1.06470 1.05530 1.04853  1.00051 1.13371 1.11355 1.09966
0.01574 0.06473 0.05538 0.04870  0.01574 0.13370 0.11355 0.09966
'S, 1.00005 1.04531 1.02924 1.02763  1.00005 1.09758 1.06315 1.05785

0.01417 0.04547 0.03031 0.02887 0.01417 0.09758 0.06315 0.05788

Stox 1.00009 1.03605 1.02310 1.02215 1.00009 1.07818 1.05100 1.04673
0.01608 0.03701 0.02611 0.02543 0.01608 0.07820 0.05120 0.04701

Sh 0.99805 1.05100 1.04215 1.03719 0.99805 1.10849 1.08948 1.07904
0.01777 0.05129 0.04289 0.03836  0.01777 0.10849 0.08948 0.07905

MAD (.99948 1.04274 1.03513 1.03130  0.99948 1.08980 1.07459 1.06528
0.02089 0.04412 0.03763 0.03460  0.02089 0.08981 0.07465 0.06545

200 sbar/c, 1.00014 1.16014 1.33401 5.61484  1.00014 1.30772 1.63318 6.65260
0.00925 0.16013 0.33401 4.61482  0.00925 0.30771 0.63318 5.65257

Q 1.00052 1.06456 1.05532 1.04847  1.00052 1.13360 1.11364 1.09969
0.01117 0.06455 0.05532 0.04847 0.01117 0.13360 0.11363 0.09969
Se 1.00010 1.04516 1.02924 1.02751 1.00010 1.09745 1.06319 1.05788

0.01005 0.04516 0.02939 0.02772  0.01005 0.09745 0.06320 0.05787

Shax 1.06012 1.03593 1.02306 1.02215 1.00012 1.07814 1.05111 1.04671
0.01140 003603 0.02390 0.02310 0.01140 0.07814 0.05112 0.04672

Sq 0.99806 1.05086 1.04216 1.03719 0.99806 1.10837 1.08959 1.07906
0.01259 0.05087 0.04223 0.03735  0.01259 0.10838 0.08959 0.07907

MAD 1.00013 1.04318 1.03576 1.03191  1.00013 1.0903¢ 1.07537 1.06596
0.01475 0.04334 0.03623 (.03268 0.01475 0.09030 0.07538 0.06596
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PERFORMANCE OF CONTROIL: CHARTS
WITH ROBUST PROBABILITY LIMITS

The average run length (ARLY is commonly

used as a sununary measure in evaluating the
performance of contrel charts. In practice, we
require a large in-control ARL wvalue that
corresponds to a small false alarm rate, and a
small out-of-control ARL value to enable rapid
detection of undesirable increase in process
variability. Let £ denotes the event that a sample
statistic w falls either above its estimated upper

probability limit UC'LW or below its estimated
lower probability limit L(:‘Lw. Let RL, denotes

the run length between occurrences of the events
E when the process variation shifted from ¢ 1y

ka. Then, given &, the conditional distribution
of RL, follows a geometric distribution with
parameter F,(E|&) and the ARL required ¢

detect a shift of o to ko in the process variation
is given by

ARL(k)=E(RL,) = J: —E@l—ﬁ—)fu(u)du (%)
k

In evaluating the performance of the s-chart we
have:

P(E|G)=1+Fyl(n-DB2,,u?ik? 1= Fpl(n-1BL, ,u k%]

where F () is the cumulative distribution
function (CDF) of W =(n-1)S?/c?, and u is
the value of I/ =g/ o

In evaluating the performance of the R-chart we
have

Pk(E i C}) =1 +FW[Dct,fZ;nu’lk]_'FW{Dlva."Z;nu/k]

where W =R/o.

QOur simulation study indicates that in the event
that the preliminary samples are contaminated,
the ¥, R and s charts constructed with robust
probability limits outperform those constructed
with the classical non-resistance scale estimator.
To avoid lengthy discussions, we shall only
report the performance of the s-chart with robust
probability limits constructed from the Gaussian
and contaminated Gaussian preliminary samples.
As the sampling distribution of U =&/o cannot
be obtained explicitly for the scale estimators
considered in Section 3, the method of Monte
Carlo simulation is used to evaluate the ARL(k)

from equation (5).

A three steps Monte Carlo method used in our
simulation study of the s-chart is summarized as
follow:

Step 1: Generate m preliminary samples from
each of the N(0,1), CN(p,a), Cx*(p,c) and
CSlash(p) distributions with presumed values of
p,aandc.

Step 2: Estimate the process standard deviation
o using each of the six scale estimators
considered in Section 3 from each set of m
preliminary samples generated in Step 1, and
subsequently evaluate the probability limits of the
s-chart,

Step 3: Compute the ARL(k) of the s-chart

required to detect a shift of process standard
deviation from o to ko in future production
process.

Previous studies based on the normalily
assumption [17, 18], and that under the non-
normality assumption [5], reveal that the number
of preliminary samples used in estimating the
location and scale parameters and subsequently
the control limits of the control charts should be
much greater than the usually suggested number
of 20 to 30, especially when the sample size is
small. Consequently 200 samples are used in our
simulation study to obtain a reliable estimate of
the unknown scale parameter. The entries of
Tables 5 and 6 are evaluated using the sample
mean Monte Carlo integration technique with
100,000 replications of m =200 preliminary

samples of size »n. The estimates of S, are
computed from (3) with ¢ =7. The estimates of
8,0 are computed from (4) with &, =k, = 2.563
(k; =k, =2.239) which correspond to the
probability of a;=0.05 that one or more

observations in a Gaussian sample of size n =10
{rn=20) will be wrongly classified as outliers

[10].
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Table 5 reveals that when the preliminary
samples are uncontaminated (corresponds to
p=0), then as expected the probability limits of
the s-chart constructed with the classical scale
estimator " 5/c¢, yields in-control ARL(k =1)
value closest to the target value 370.37 and has
the smallest out-of-control ARL(k >1) values.
However, when the preliminary samples data are
contaminated with the long-tailed CSlash(p)

distribution  with  p =0.02, 0.05, 0.10, the
s~chart constructed with the estimator 5/ c, not
only leads to out-of-control ARL(k >1) values
larger than that constructed with the robust
estimators but its in-control ARL(k=1) values
are also unacceptably small. For instance, when
preliminary samples of size n=20 are taken
from the CSlash(p) distribution with p=0.10,
the s-chart constructed with the estimator 5/ (o]
yields in-control ARL(k=1} value of 1.087
which is equivalent to a high false alarm rate of
92%. This is due to the fact that the sampling
distribution of the sample standard deviation S is
highly skewed to the right, thus even a small to
moderate over-estimate of & would result in its
lower probability limit cuts off more than the
intended 0.133% area in the fat left tail of the
distribution of § and consequently leads to higher
false alarm rate. In contrast, a s-chart constructed
with the robust scale estimators not only leads to
smaller  ARL(k >1) values but also has the

required large ARL(k =1) values.

Table 5 also clearly reveals that the probability
limits of the s-chart constructed using the robust
estimator §,,  yields the best ARL(k =1) and
the smallest ARL(k>1) values amongst the
estimators conmsidered. For example, when
preliminary samples of size #=20 are taken
from the CSlash(p) distribution with 2=0.10,
the s-chart constructed with the estimator S

not only yields the smallest out-of-control
ARL(k > 1) values but also provide the smallest

false alarm rate as it has the largest in-control
ARL(k =1} value of 340,12 amongst the

estimators considered.

Examination of Table 6 reveals that the s-chart
constructed with S,,, yields the smallest out-of-

control  ARL(k>1) values when preliminary
samples of size #=20 are taken from the

i41

CN(p,a)  and  Cx*(p,c)
distributions with p=0.05. Note that ¢ =1 and

¢=0 correspond to the case when the
preliminary samples are uncontaminated and are
taken from the standard Gaussian distribution.

contaminated

REMARKS

The proposed control chart with robust
probability limits is constructed by assuming that
the underlying distribution of the quality
characteristic is known and its scale parameter is
estimated using  resistant  estimators. Our
simulation study indicates that X, R and s charts
constructed with robust probability  limits
outperform the classical Shewhart chart when the
preliminary samples are drawn from a
contaminated Gaussian distribution. However, to
avoid lengthy discussions, we only report the
performance of the s-chart constructed with
robust probability limits. The s-chart constructed
with its probability limits evahmted using the
estimator S, vields the best in-control ARL

and the smallest out-of-control ARL values
amongst the robust and resistant estimators
considered. Our results obtained from this study
also reveal that the proposed estimator Spor 18

the most efficient and resistant estimator of scale
amongst the estimators and contaminated
distributions considered.,

1t cannot be denied that the robust estimation of
the location and scale parameters is computation
intensive and therefore clearly excludes the use
of a hand-held calculator. However, this should
not be an issue at this modern age where
computing facilities are readily available and
accessible at low cost.
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