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ABSTRACT  This paper considers a manufacturing system which procures raw materials from :
suppliers and processes them to make a finished product. The problem is to determine an optimal | !
production size with a single installment of raw materials to satisfy a deterministic time-varying demand
process by minimizing the total relevant cost, We developed a mathematical model for the preblem and 1 ‘
then compared the result with a lot-for-lot model with single instaliment and lot-for-lot model with
multiple installments. From the optimality condition, we derived an optimal solution procedure for the |
proposed model. We present numerical examples for a discussion and comparison. i 1

|

ABSTRAK Kertas kerja ini mempertimbangkan sistem pembuatan dimana bahan mentah diperolehi
dari pembekal dan kemudiannya diproses kepada bahan siap. Masalahnya adalah untuk menentukan saiz
pengeluaran dengan satu pesanan bagi memenuhi proses permintaan yang berketentuan berubah dengan i
masa dengan meminimakan jumlah kos yang berkaitan. Model matematik dibina untuk masalah tersebut

dan keputusannya dibandingkan dengan model lot demi lot dengan satu pesanan dan lot demi lot dengan

beberapa pesanan. Daripada syarat pengoptimumam, prosedur penyelesaian optimal diterbitkan untuk

model yang dicadangkan. Beberapa contoh berangka diberikan untuk perbincangan dan perbandingan.

(Batch size, manufacturing system, deterministic time-varying demand, optimality condition)

INTRODUCTION installments of raw material for each production
lot size.
In many manufacturing systems, the guantity of
raw materials needed for production is dependent In this paper, we consider a case where the whole
on the production size. Therefore, it is preferable requirement of raw material during the planning
to unify the optimization of both elements under horizon will be ordered with a single installment
a single model. Khan and Sarker [1], Sarker and at the beginning of the planning horizon. This
Newton [8], and Sarker and Parija [6] developed model is more appropriate in a case where an
a few models for this system under continuous ordering cost is more expensive compare to the
supply and a constant demand rate. In reality, this holding cost. In this model we determine the
assumption is very restrictive especially during number of production batches, 5, and the
the growth and decline phases of the product life manufacturing quantity for each batch which give
cycle, it is either increasing or decreasing with the minimum total cost.
time. Omar and Smith [2] have developed a lot-
for-lot model for this system under linearly By using the optimality condition (see Omar and
increasing time-varying demand process. Omar Yeo [4]), we derived an iterative optimal solution
and Supadi [3] have extended this model and procedures. We find an optimal solution by using
developed a lot-for-lot model with multiple equal Microsoft Excel Solver. Finally we presented
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nmumerical discussion  and

comparison.

examples  for

MATHEMATICAL FORMULATION

The cost factors which are considered here are
{he raw material ordering cost, the manufacturing
set-up cost, the raw material holding cost and the
finished product holding cost. Here, we state the
assumptions and notations.

Assumnptions

1. The supply of raw material and finished
product are continuous.

9. No shortages are permitted.

3. A single product inventory system is
considered over a known and finite planning
horizon, H.

4. During production time, finished product
becomes immediately available to meet the
demand process. ‘

5 The demand rate of finished product at time ¢
in (0, H)isfi) = a + bt.

6. The finite production rate is P units per unit
time and P > f(z) for all 1.

7. For simplicity we only consider one type of
raw material (j = 1) is required to produce
one unit of a product (r = 1).

3. The inventory level of the finished product is
zero during the start and the end of each
cycle.

Notations
1. cpisthe fixed manufacturing set-up cost.

2. ¢, is the ordering cost for raw material 1.

3. hyis the carrying inventory cost per unit per
unit time for finished products.

4. h is the carrying inventory cost per unit per
unit time for raw material 1.

5. is the total number of batch replenishment
(L= ).

6. rp is the amount/quantity of raw material 1
required in producing one unit of a product.

Figure 1 gives a graphical representation of the
model when n = 3. It shows the inventory level of
raw material and finished product against time.

In this model, raw material will be ordered once
at the beginning of the planning horizon for the
whole batches in the production planning. This
case is more suitable when the ordering cost of
raw material is expensive comparing to the
ordering cost.

We assume that production starts at time £, until
t,* and as soon as the previous batch has been
used up at time £ until &* where i = 1,2, ....7t - 1.
The accumulated inventory during the production
up-time is used for making delivery during the
production down-time until the inventory is
exhausted. The production is then resumed and
the cycle is repeated.

F Inventory level

Raw
Material

—

Finished
Product

- Time

Figure 1.

Plot of the inventory of raw material and finished product against time withn =3
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In order to obtain the total relevant cost of the model, we need to find the arca below the graph. Let OR;
be the quantity of raw material f needed for the whole production horizon. Then we have:

n—|

H
OR; =7, J'f(z)dz i=0,1,.,n-1 (1)
0 0

The total time-weighted stockholding for raw miaterial is given by the areas A, B and C, Tt follows:
i f 2 ! ts
L 4l —_
» fj.f(t) AR tj.f(t) d

i H 2 H
ﬁ(r'[f(t) dr] + tz,jf(t) dt

2
+ If(t) dt
" @)

Then for r-batch production cycle the total time weighted stockholding for raw material is

2
1 =1 fis] n-1 ¢

[roa| + > o [roa
4 =0

1= {i

i+l

2P 4=

Similarly, the total time weighted stockholding for the finished product is (see Omar and Smith [2]):

i=0| ¢ ¢

i

where the first term represents the area under the curve during production up-time and the second term is
the area during production down-time.

Finally, the total cost for the production system for a given planning horizon is given by

n=1| finf tiet 1t f
TC=nc, +h,l Y. j [7)ar|ae| - j If(t) dt| - | Pl - 1)~ [r(0) ar |t
=0\ ] I3
=11 fisl 2 n—1 fis1 “@
b ey + | == _[f(t) | + ¥t j £t dt
2P =01 4 i=0 t:

i i
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ik For a linear increasing demand, {5} = a -+ b, we have
ﬁ:m il

it ty — 1, b 17 b ’
‘ [ TC=unc, + h z(”] {[a +§(2t,~+1 + ti):l - F{a +E(tm +t,-)jl }

|
A
b 2l
iﬁl* U | + ¢y + iy agzol[“(fm ~1;) + E(fm -4 )} (5)
gl -
i‘ n- b
2 2
!‘ i + Z [ li — 2(ri+l — )jl -
M
il
e SIC o
| SOLUTION PROCEDURES — =0, (6) 0
f &i ‘
i We find an optimal solution of the model by
' using an iterative optimal procedure by using the with #.> 0, and ; < £, <H.
| % first principle of optimality.
. . Taking (6) into consideration then,
For a fixed and given n, the necessary condition
. for the optimal #, (i = 1,2, ..., n - 1) are

‘ , :
a hp{(r, —1 ){a +%(2:, + tj_l):l = %[a + %(ri +r‘._1)] } +—(t‘—_2t'—‘)—{r2§ —Ep[a + %(t,- + tH)}}
o | ) , X
‘ ~{ti - Ir') {[a +%(2f5+1 + ti)} - %[‘1 + z(wl + )jl } (t’—ﬂ‘;i)_{‘g _%[‘1 +%(tr'+l + fr)}}}
i +hy {lp[a(fs - ri-l)+%(t?_ i )] [ﬂ + b‘j] +%|:a(ti+l - t,-)+22)(t,2+1 33)} [—a - bg] )]
‘ +lat bt ] + [atm 2at; + thﬂ f3—§r,.2 ]} =0
1
|
I
1
[
|
|

R ,

: 2 1 2 [{ Pla abs 2( ”--n]

: ==t at, 77—\ —aPl2e, -t )+ a-—t; ——1 + b Lt =0
18 9 i+l i+] (—(J-I-P—bfi) ( i i !) ) i 5 -1 7

wherei=1,2,...,n— L.

' I Equation (7) can be simplified as:

' ati, + br!‘zﬂ = F(t"‘l-’ ti)

or,

;l . o = 4% + %‘jaz + 26F (s 1) P=1 2,0 01 @
. where,

i i P ab Lt
| Flo_,, £) = ——————ila® = .t I FE ey 20,3 _ L=l
| (i 1) Ca +P—bt,-){(a aPX2t, o)+ Bb(a 2}: St b [t, 5 ﬂ
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Generally we are unable to show that (1) > 0 for
0<t, < t<H(@=1,.,n- 1).

However in our numerical study, it is true for our
cases, hence the squareroot portion of Equation
(8) is always positive, therefore guaranteeing that
4.1 is always defined. Uniqueness of 7, is also
guaranteed since the only other alternative will
result in non-feasible negative value.

With f,= 0 and for a known value of #;, the value
of 1, is easily deductible from Equation (8). We
note that only the positive value of ¢ is taken into
consideration. The obtainment of £ will in turn
lead to ; by using Equation (8) recursively with
the new f» as one of its argnment. So, by
continuing this process, all ’s { = 2, 3, ..., n can
casily be found. By varying the value of 1, we
repeating this procedure until all #’s are optimal
or whent,=H.

NUMERICAL EXAMPLE

To demonstrate the effectiveness of Model 3 we
use this particular example. The parameter's
values are:

»

¢ =100 b =300 H=5
P =20000 ¢, =40 h,=2
/1;:0.1

By using the similar parameter, we compared the
result of this model with Tot-for-lot medel (Model
1) developed by Omar and Smith [2] and lot-for-
lot model with multiple installments of raw
material (Model 2) developed by Omar and
Supadi [3]. The minimum total cost with
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variation values of ¢, and A, for the case of f{t) =
100 + 300 are shown in Table 1 and Table 2
respectively.

From Table 1, when ¢, = 0.001, 0.003, .., 0.03
Model 2 gives the best minimum policy.
However when ¢, = 0.05, 0.07, ..., 70.00, Models
1 and 2 give similar optimal policy. Thus when ¢,
> 0.05 the multiple installments may not be cost
effective, as a result the single installment is
optimum in this case, However, when ¢, = 70.00,
90.00, ..., 1000.00 Model 3 gives the best policy
due to the higher holding cost of raw material.

Figure 2 gives the minimum total cost against the
ordering cost of raw material. The minimum total
cost of Model 1 and 2 are more sensitive
compared to Model 3. For example when the
ordering cost of raw material increase from 100
to 400, the percentage increment of the minimum
total cost for Model 1 and 2 is 79.65% and for
Modet 3 is 9.44%.

Table 2 represents the minimum total cost against
the holding cost of raw material when ¢, = 8. As
expected, Model 3 gives the best minimum total
cost for very low raw material holding cost.
When 4, > 0.01 Model 1 become more supetior
than Model 3. Finally when h; = 30, Model 2
gives the best policy.

In Figure 3, the minimurn total cost for all models
against the holding cost of raw material are
plotted. It shows that Model 3 is more sensitive
compared to Model 1 and 2. Model 3 gives the
best policy when the holding cost of raw material
is not higher than 0.012.

i
e

'..”\v £
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Table 1.  The minimum total cost of each model with different values of ¢,

¢ n* | TC* (MODEL1) | n* | m* | TC* (MODEL2) | n* | TC* (MODEL 3)
0.001 22 1747.7554 22 | 10 1747.7554 22 3077.2594
0.003 | 22 1747.7994 22| ¢ 1747.7994 22 3077.2614
0.005 | 22 1747.8434 22| 5 1747.8434 22 3077.2634
0007 | 22 1747.8874 22 | 4 1747.8874 22 3077.2654
0.009 | 22 1747.9314 22 | 3 1747.9314 22 3077.2674
0010 | 22 1747.9534 22| 3 1747.9534 22 3077.2684
0030 | 22 1748.3934 22 | 2 1748.3934 22 3077.2884 _
0050 | 22 1748.8334 2 | 1 1748.8334 22 3077.3084 W
0070 | 22 1749.2734 22 | 1 1749.2734 22 3077.3284
0.090 | 22 17497134 2|1 1749.7134 22 3077.3484
0.100 | 22 1749.9334 22 | 1 1749.9334 22 3077.3584
0300 | 22 1754.3334 2 | 1 1754.3334 22 3077.5584
0.500 | 22 1758.7334 22 | 1 1758.7334 22 3077.7584
0.700 | 22 1763.1334 22 | 1 1763.1334 22 3077.9584
0900 | 22 1767.5334 2|1 1767.5334 22 3078.1584
1.000 | 22 1769.7334 2 |t 1769.7334 22 3078.2584
3000 | 21 1812.9457 21 | 1 1812.9457 22 3080.2584
5000 | 21 1854.9457 21 | 1 1854.9457 22 3082.2584
7.000 | 20 1896.4708 20 | 1 1896.4708 22 | 3084.2584
9.000 | 20 1936.4708 20 | 1 1936.4708 22 3086.2584
10.000 | 20 1956.4708 20 | 1 1956.4708 22 3087.2584
30.000 | 17 2319.7256 17 | 1 2319.7256 22 3107.2584
50.000 | 15 2634.8325 15 | 1 2634.8325 22 3127.2584
70.000 | 13 2919.2172 13| 1 2919.2172 22 3147.2584
90.000 | 12 3177.8471 12 | 1 3177.8471 22 3167.2584

100.000 | 12 3297.8471 12 | 1 3297.8471 22 3177.2584
250.000 | & 4790.4203 8 | 1 4790.4203 2 3327.2584
400.000 | 7 5924.4544 7 11 5924 4544 22 3477.2584
550.000 | 6 6891.1428 6 | 1 6891.1428 22 3627.2584
700.000 | 5 7775.6990 511 7775.6990 22 3777.2584
850.000 | 5 8525.6990 s |1 8525.6990 22 3927.2584
1000.000 | 5 9275.6990 5 |1 9275.6990 22| 40772584
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Table 2.  The minimum total cost of each model with different values of /1,
iy n* | TC*(MODEL 1) | n* | m* | TC*(MODEL 2) | n* | TC* (MODEL 3)
0.0005 20 1914.0627 20 1 1914.0627 22 1760.1937
0.0006 20 1914.0676 20 I 1914.0676 22 1761.5254
0.0007 20 1914.0676 20 1 1914.0676 22 1762.8572
0.0008 20 1914.0700 20 1 1914.0700 22 1764.1889
0.0009 20 1914.0724 20 1 1914.0724 22 1765.5206
0.0010 20 1914.0748 20 1 1914.0748 22 1766.8523
0.0030 20 1914.1234 20 1 1914.1234 22 1793.4868
0.0050 20 1914.1719 20 1 1914.1719 22 1820.1213
0.0070 20 1914.2204 20 1 1914.2204 22 1846.7557
0.0090 20 1914.2690 20 1 1914.2690 22 1873.3902
0.0100 20 15914.2933 20 1 19142933 22 1886.7074
0.0300 20 1914.7770 20 1 1914,7770 22 2153.0521
0.0500 20 1915.2608 20 1 1915.2608 22 2419.3967
0.0700 20 1915.7446 20 1 1915.7446 22 2685.7414
0.0900 20 1916.2285 20 i 1916.2285 22 2952.0860
0.1000 20 1916.4708 20 1 1769.7334 22 30852584
0.3000 20 1921.3093 20 1 1921.3093 20 5743.9430
0.5000 20 1926.1454 20 1 1926.1454 19 8397.0924
0.7000 20 1930.9791 20 1 1930.9791 18 11043.7628
0.9000 20 1935.8103 20 1 1935.8103 16 13682.6000
1.0000 20 1938.2251 20 1 1938.2251 16 14997.6364
3.0000 21 1984.5257 21 1 1984.5257 1 28001.3895
5.0000 21 2030,2021 21 1 2030.2021 1 28904.3895
7.0000 22 2074.2755 22 1 2074.2755 1 29807.5825
9.0000 22 2117.5560 22 1 2117.5560 1 30710.7755
10.0000 22 2139.1473 22 1 2139.1473 1 31162.3720
30.0000 26 25229026 22 | 2 24226773 I 40194.3021
50.0000 30 2851.6778 24 1 2 2629.4058 1 49226.2321
70.0000 33 3144.8154 22 | 3 2776.6126 1 58258.1621
90.0000 36 3412.0978 23 | 3 2915.5261 1 67290.0921
100.0000 37 3537.7196 23 | 3 2982.9554 1 71806.0571
250.0000 53 5056.9102 23| 5 3686.4742 1 1395455323
400.0000 65 6212.3940 22| 7 4193.1234 1 207285.0074
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CONCLUSION

In this paper, an integrated production system for
a single installments policy of raw material is
developed. Our numerical results show that the
proposed meodel is superior for a higher ordering
cost of raw material or lower holding cost of raw
material.
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