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ABSTRACT  In arecent study [1], an ordinary differential equation model has been given for one-
prey (mussel) and one-predator (sea star) of a benthic community, representing their spatially-structured
dynamics. We generalize this model in this paper and extend its scope to the dynamics of three species
(one-prey, two-predators) of benthic community namely: mussel, sea star and spiny lobster. We present
two models in this paper, one with the assumption that the prey reaches certain size and becomes resistant
to both predators and the other when the large size prey becomes resistant to one predator but remains
vulnerable to the other. It is seen that these models have the possibility of multiple equilibrium solutions
whose existence and stability may be related to the crucial parameters of the two predators.

(Spatially-structured; benthic species; predator-prey interactions)

INTRODUCTION studies contradict the hypotheses of spatial and

size refuges [5, 6] terming the refuge hypothesis

In a recent study, authors in [1] introduce four as an oversimplification of a more complex
models (each model representing a different situation.

model class from ordinary differential equation
(ODE), stochastic birth-death (SBD), cellular Mussel growth depends on the flow of water
automata (CA) and agent based models (ABMs)) providing food, resulting in higher growth rates

of an intertidal predator-prey system to for mussels located in the intertidal zone and on
demonstrate advantages of the multiple model wave exposed shores [7]. The probability of
approach, They introduce an experimental system being attacked by a predator decreases when a
of mussels and their predators. The mussel mussel is surrounded by larger mussels [6, 8].
Muytilus californianus is a dominant species of the Thus, the rates of production and mortality in any
intertidal zones of the North American continent. specific location depend on the location of a
This species is found in narrow bands in shore mussel in the gradients of tidal height and wave
sites of moderate to high wave exposure. The exposure and on the size and density of
predators of M. californianus are the sca star, surrounding mussels.
Pisaster ochraceus, in the Pacific Northwest [2,
3], and the spiny lobster, Panulirus interruptus, Authors in [1} incorporate these assumptions in
in Southern California [4]. their models considering rates of recruitment,
growth, and predation mortality as dynamic
Early experiments suggested that mussels spatially explicit process. They take a multiple
experience a spatial refuge from predation at the model approach and develop and analyze four
upper intertidal zone, It was observed that below classes of models to study the predation
the upper intertidal zone there were patches of dynamics in benthic communities. Their ordinary
very large mussels which escaped predation [2]. differential model is a two-species model that
It has also been observed that sea stars ate represents the dynamics of a single prey (mussel)
mussels smaller than the maximum available and its single predator (sea star) in the Pacific.
size. This suggested that mussels reach a certain We generalize this model in this paper and extend
81z¢ and become resistant to predation. Later its scope to three-species interactions of mussel,
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sea star and spiny lobster, Indeed we propose two
models designated Model 1 and Model 2. While
we develop Model 1 under the assumption that
the prey reaches a certain size and becomes
resistant to both predators, we formulate Model 2
for a situation when the large size prey becomes
resistant to one predator but remains vulnerable
to the other. It may be mentioned that while our
Model 1 concerns the interactive dynamics of
those .regions of Pacific where all the three
species i.e. prey (mussel) and its two predators
(sea star and spiny lobster) may interact, Model 2

can also be applicable to other similar situations

of fish interactions,

We find the equilibrium solutions of Model 1 and
Model 2 and study their stability. It is found that
likewise two-species model of [1], our three-
species models still have the possibility of
multiple equilibrium solutions whose stability
depends on the crucial parameters of the two
predators. We plan the rest of the paper as
follows. We formulate main models in section 2.
Equilibrium solutions of the models are given in
section 3. We discuss the stability of the
equilibrium solutions in section 4. Section 35
contains the main conclusions of the paper.

MAIN MODELS

We base our three-species interaction model on
the work in [1] where “space” is made up of a
large number of very small “patches” which can
be occupied by, at most, one mussel and
predators move randomly among patches. Prey
biomass grows in size in each patch until a
predator grazes a patch to size zero. In this
setting, each patch is either empty or occupied by
a.mussel. We consider the three-species model to
be governed by the following set of equations

6”5;’ ) + 6ng:; J =—u(a,t)n(a,t), 1)
é:’t(_f): I, —a (£)P(t), @
D P Y O

where n{a,)is the density of prey of age a at
time t; P(f) and Q(f) represent the densities of

the two types of predators. Equation (1) is the
well known Mckendrick model [9] for removals
in  an  age-structured population  with
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#(a, t) denoting the mortality rate for prey of
age a at time &, '

We assume that the addition of new individualg
into prey population takes place according to

n(0,1) = c(1-N@)/K) @

where & is the constant rate at which the prey
settle into empty patches with overall recruitment
of prey decreasing linearly until all available

space is occupied at a maximum density X,
N(#) represents the overall prey density to be

given by n(7) = _[n(a, f)da. In the above open
0

system, predators P(f)and Q(f) immigrate at

the constant rates /,and 7, and emigrate at the

per capita rates &, (¢) and &, (¢) respectively.

Considering that the prey (mussel) size plays an
important role in its protection from predation,
we let s(a) denote the size of a prey of age a

and assume growth to be given by the von .
Bertalanffy [10] formulation

s(a) =s,, — (s, — 5y )exp(—fa), where S
is the growth rate, 5 is the maximum size, and
Syis the size of a newly settled recruit. We

assume each prey’s vulnerability to predation
depends on its size and density and size of prey in
some . spatial neighbourhood _f‘of radius
R surrounding the individual. Following authors
of [1] in their mean field approximation, we
consider the size of the neighbourhood R = 0,
and define S(¢) = js(a)n(a, Hda , )
0

as the mean size of prey weighted by prey
density.

Model 1

We develop this model under the assumption that
the probability of prey being attacked by either
predator decreases when a mussel is surrounded
by larger mussels [6, 8] and accordingly we write
the mean field approximation for the per capita
mortality rate of prey as

@) = gty +k (OP@E) + ko (DAD]expteS?))
(6)
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which is independent of prey age but decreases respective predation coefficients of predators
fiexponentially with the weighted mean size of P(t)and Q1) .

ey, S(¢). The parameter £, is the mortality

fate due to causes other than predation, ¢ is a
measure of how quickly resistance to predation

For predators, we assume that the emigration rate
of each predator from the system is inversely
proportional to the per capita rate of prey

ith prey size, and k,, and k., are the : .
ases with prey v 20 consumption and consider

ncre

E E
_ 1P d = 12 7
“‘(t)'[k“,S(t) exp( —c(sm)} e {kIQS(f)GXP( QC(SUD} i

the right does not depend on & (see (6)), (8) can
be reduced to (9). Next differentiating N (#) with
respect to time ¢ and using equation (1) again, it

where Ep and Ej,are the constants of

proportionality relating prey consumption to
predator emigration. Taking the time derivative
of S(#) in (5) and using equation (1), we get (8). can be shown that N(¢) satisfies the following
Integrating the first integral on the right by parts differential equation (10).

and using the fact that £ in the second integral on

‘i}i Z‘Js(a) 22 da - 0J8<a>u(a,r)n(a=r>da ®

ig—= 500 + (5,8 = $,0K IN(@) = [ + o + (kip P + ki Q) exp(—cSENIS@) O

aN - :
- = K ‘o o+ gy + (kP o+ ki gQ)exp( —cS ()N (1) (A0
In the process, we have replaced the Mckendrick equations (2) and (3) along with necessary
equation (1) by a pair of differential equations (9) changes, Model 1 can be seen to comprise of four
and (10). Now combining these equations with equations only as given below.

%j—: 500 + (s, B = 5,0K IN(@) = [B + po + (kipP + kg Q) exp( —cS (E)] S ()

ifg_z o —[K o + u, + (kP + ki p0Q)exp( —cS ()] N (1)

dp E ., P (2) Model 1

a T T S () e~ (1)
dQ _ g B EIQQ (t)
a ' kg S (t)exp( — oS (t))

Here we have replaced the notations /, and k]P = le =6,1,=1 10 =1, and E =E1Q =&
I,by I, and I, respectively to relate these (11)

immigration rates of predators to Model 1. It may Mo del 1 reduces to the form of the mean field
be noted that under the similarity conditions for approximation model of [1] as follows:
the two predators in terms of their vital PP '

parameters given as
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%j—_: S()o- + (Swﬂ

dN

dt

dz e, Z

=c - [K "o+ u, +8 Z exp(

—8,0K T)N() —[B + sy + 6 Z exp( ~cS (1)] Sir)

-8 (tN] N (1) Model 1A

dt & S (1) exp(
where

Z =Z(t) = P(t) + O(t). We shall refer to this
model as Model 1A in this paper.

Model 2

We formulate this model under the assumption
that the probability of an individual prey being
attacked by the predator P (predator())

- oS

H

(1)

decreases (increases) if this individual g
surrounded by larger preys. In other words 11 may
also be said that while the predater /7 hag
preference for smaller size preys the prodator
QO prefers larger preys. We incorporate this
assumption by considering
mortality rate of prey as

the per :upita

Hla,t) = puo + kyp P(1) exp( —aS (1) + k,n Q (1)1 — exp( —¢S (1)) (12)

where k,, and k,, are the attack coefficients
of predators Pand () respectively, ¢ and

Hocarry the same meanings as in Model 1.

o (t)_ EZP
T L kL S () exp( —cS (1))

Here F,, and E,jare the constants of

proportionality relating prey consumption to
predator emigration. Following same steps as for

Again assuming that the emigration rate ol ..ich
predator from the system iz invercly
proportional to the per capita rate of ‘wey
consumption, we con. ler

and (t) = Loy
: ke S (t) (1—exp( —cS (1))

Model 1, it can be shown that Model 2 consist- -
following four governing equations.

%§=500+ (Smﬁ_soo'Kil)N(I) —[B+ py + ks pPexp(—cS(#)) + kng(l —exp(—eS (NS (7

dN
dt

dpP E ,, P (t)

Izp -

=0 —[K o+ Ho + kypPexp( —cS (8) + kZQQ(l —exp( —oS ()] N (i)

Model 2

dt ko, S () exp(

H

- S (1)

do E .00 (1)

f, -

at

This time we have replaced the notations /, and

I by I, and I, respectively to relate these

immigration rates of predators to Model 2. It may

e kyo 8 ()1 - exp(

- S (1))

be pointed out at this stage that Model 2 in
addition to benthic communities may also
represent the dynamics of those sea populations
{e.g. fish populations) which may have
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interactions  similar to these communities. vital parameters such as
Likewise (11), if the two predators have similar

/
k,p = koo =0, 1,5 =15, = I',and E,, = E,, = e, , (14
then Model 2 takes the simplified form as under

%’?— = 5,0+ (5,8 — 50K "IN =[S+ o + 6’ {Pexp(—cS() + Q1 - exp(—eS()}1S(),

AN _ o (Ko + gy + 0 (Pexp(—cS (1) + Q(L~exp(—cS (O] N(r), ~ Model 24

dt
® eo P (1)
d 6 'S (t) exp( - S (1))

Q. e, ' Q (1)

di g 'S ()1 - exp( -5 (1))

which we shall refer to Model 2A in this paper.

EQUILIBRIUM SOLUTIONS

Model 1
An equilibrium solution (S*, N*, P*, Q") of Model I will satisfy

5,0+ (5,8 _SOO_K_I)N* _[)6’ + My + (klPP* + leQ*) exp(—cS*)]S* =0, @15

[K"lcr+,u0+(k1PP'+k1QQ*)exp( —cS N = o, (16)
*E]PP # = IIP: (17)
k.S exp( —-¢§5 )
E *
- - 10 9 —=1,,. (18)
g8 exp( — oS )

Equations (16), (17) and (18) can be used to find N, P* and Q" in terms of S as

% ’ (o2
N o= — ; ; (19)
[K o+ puy,+ (A, +B)S exp( —2c§ )}
P = 4,8 exp( —cS ")/k,, 0" =B, S exp( -¢S )k,
(20) (1)

where A, =1k, /E,, and B, =TIk, /E,.

117



Malaysian Jownal of Science 25 (2): 113 — 129 (2006)

Substituting for N*, P and Q" from (19), (20)

and (21) into (15), S" can be found as a real

positive root of the function -

f(8)= SOO'[K_IO' + py+ (A +B)Sexp(—2¢S)+[5 s, — K’lsocr]a —
S[B+ uy + (A +B)S exp(—2eS)[K o+ p, + (4, + B,)S exp(-2¢S7)] =0,

0<§5<s,

For the prey N we use the same data as given in
[1] and reproduced here in Table 1. For predators
Pand O, we consider parameter values from
Table 2. We find that under both conditions (i)
when the two predators have their wvital
parameters equal (see (11)) and (ii) when the two
predators differ in their vital parameters, Model |
has the possibility of multiple equilibrium
solutions depending on the number of roots of
equation (22). More specifically, Model 1 has
either single equilibrium or three equilibriums.

For illustration purposes the parameters from
Tables 1 and 2 are fixed as follows —

s, =1.0,6=1.0,s, =200.0,K =1.0,
£=00001, =004, pB=0.0004
I,=Ly=I=001, E,=E, =¢,=50.

Then the two cases when the two predators have
equal parameters and when they differ in vital
parameters can be categorized by whether

kp=kg, =40 or ki # k. For the case when

equilibriums (denoted S, as lower equilil
S,as middle equilibrium and S, as

equilibrium) if #=0.44and a single (|
equilibrium S, i€ =3.0. It can also be =
for the case when the two predators differ in

vital parameters that Mode! 1 has a single (v
equilibrium denoted
kip=02,k,=04; three equilils

(denoted S| as lower equilibrium, §,as n
equilibrium and S, as upper equilibriun
kp=03,k,=05and a
equilibrium S, if £, =4.0, le =3.0.

want of space we illustrate only the case
the two predators differ in their vital param
in Figure 1 (a - ¢).

single (I

It may be mentioned that in our illustratiol
use variations in predation coefficients «
Obviously variations in other parameters suc
immigration or emigration rates of predators

the two predators have equal parameters, it can be considered as well for such illustrat)
be shown that Model I has a single (upper)
equilibrium  denoted ~ S,if6/ =1.0;  three
Tablel. Model parameters and their default values from [1]
SYMBOL DEFINITION VALUE SYMBOL DEFINITION VAL
area Unit area 25 ¢m® 5 Maximum prey size 200 v
o]
A Total system area 4x10* units of K Maximum prey density | prey i =it
r area area
t Time 1 day Per capita prey mortality 0.0001 "
Ho rate
a Age 1 day c Resistance to predation 0.04 unit wea
with prey size mm”'
o) Prey recruitment rate 1 prey (unit B Decrease in prey growth 0.0004 div’
area)”! day” rate with size
S5 Size of newly settled prey 1 mm

118

n,

DET




Malaysian Journal of Science 25 (2): 113 — 129 (2006)

. Table 2. Parameter values for predators P and Q of Model 1.

SYMBOL DEFINITION VALUES UNITS
kpp Attack coefficient of predator P <10, 10, =10 unit arca predator” day”
kiQ Attack coefficient of predator <10, 10, >10 unit area predator” day™
I Immigration rate of predator P < 0.01, 0017, >0.01 predator (unit arca)” day
IlQ Immigration rate of predator () < 0.01, 0.01, =001 predator (unit area)' day™
E, Emigration rate of predator P <500, 50, >50 mm predator” day™
Ey, Emigration rate of predator {J <5.00, 50, =>350 mm predator” day™

“alues used by Donalson, ef al in [1]

DA 1 ' . =
(a)
0.08 \
1)
\
Y
|
0.08 \
: \
\a
\\
hY
fs) 0.04 ~
.
0.02
.. 83
1] S———
c
.0.02 | | | i : ! : | T
0 20 40 80 80 100 120 140 180 180 200

]

Figure 1a.  Multiple equilibriums of Model I with different parameters e.g. kl pF kl o
L, =Ty =T=001,E, =E,=¢,=50:5=10,0=10, s, =2000, K =10,
£=0.0001, c=0.04, §=0.0004, k, =0.2,k, =040 ki, =0.4,k,=0.2
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Model 2
Following the same steps as for Model 1, it can

be shown that an equilibrium solution

(ST, N™,P",07) of Model 2 is given by

equations

N" =c/[K "o+ u,+ 4,8 exp( -2¢8 "Y+ B, ST (1 exp(-cS TN, (@23)

P”=4,8" exp(—cS")/k,,, (24)

where

Q" =B,8" (1-exp(—cS™))/ kyps  (25)

A4, = I,, k2. /E,, B, = szkzzg /E,, and S™ is a positive real root of

F(8) =5,0[K o+ py + 4,8 exp(—2¢S) + B,S(1 - exp(—cS))? ]+

[fBs., —5,0K o — Slu, + B+ 4,8 exp(—2¢S) + B,S(1— exp(—S$))* |

(K70 + thy + 4,8 exp(~208) + B,S (1~ exp(cS))*] = 0

Again choosing parameter values for the prey N
from Table 1 and for the two predators from
Table 2, it can be seen that Model 2 also has the
possibility of multiple equilibrium solutions
depending on the number of roots of equation
(26). Choosing the parameter wvalues as

kyp =1.0,1,, =0.001, 7,, =0.00001,
E,. :l.O,EZQ =5.0; s, =10, o=1.0,
s, =200.0, K=10, £ =10.0001,
c=0.04, #=0.0004, it can be shown that
Model 2 hes a single (upper) equilibrium S, if
k,p = 0.7, three equilibriums (S, S, and S,)

- 121

0<S<s, (26)

if k,, =1.0 and a single (lower) equilibrium
S, if k,, =5.0. Again just for an illustration,

we display the possibility of three equilibriums in
Figure 2. It can also be seen that under the
similarity conditions (14), Model 2 (or more
specifically Model 24) has the possibility of one
equilibrium solution only. We illustrate this in
Figure 3 for different values of immigration rates

ie. I’ =0.00001, 0.0 and 1.0. Similar result
can be shown for different values of predation
cocfficients & or emigration rates 60!. This
single equilibrium can be either lower
equilibrium S, or upper equilibrium S, .

ISAN
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0.1
0.08"
0.06
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0.02

F(S)

0
!

-0.02

-0.04

0.06 .

-0.08

a1 | | | | | I . i
G 20 40 60 &0 100 120 140 160 180

S
Figure 2.  Multiple equilibriums of Model 2 for different values of attack coefficient kz p of Predator P.

kpp =1.0,1,, =0.001, I, =0.00001 ,E,, =1.0,E;p =5.0: 5, =10, 5 =10,
s, =200.0, K =10, 2 =0.0001, c=0.04, f=0.0004, k,, =1.0.

04 - I I

0.2
I =0.00001

I'=0.1

0.1l i=1.0

200

041 ’ I
o 20 40 60 80 100 120

8

Figure 3.  Single equilibriums of Model 2 under similarity conditions (14) k2 p= kZQ =¢ ! ,

Lp=Iy=1I' Eyp=Ey=¢ys,=10,0=10,5,=2000, K =10, s, =0.0001,
¢=0.04, f=00004, & =1.0,¢, =50, @ ' =0.00001, Gy I' =0.01, i) /' =1.0
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STABILITY OF EQUILIBRIUM
SOLUTIONS

Model 1
Using the default values of Table 1 for prey NV,
taking any suitable choice of values for

parameters kyp ko Lyp 11, Eyp and B of
the two predators P and ) from Table 2 and

integrating the system of equations of Model 1,
it can be seen that the lower equilibrium

(S;,N,, P, 0 )and the upper equilibrium
(S5, N,, P, 0;) of Model I are stable where
as the middle equitibrium (S,, N,, Py, 0;) is
unstable. Here S: is a positive real root of
N, P and @, are the
cortesponding equilibrium values for prey NV,
predator P and predator (J obtained from (19),
(20) and (21) respectively. The unstable
equilibrium (S, N, P, Q; ) lies in between
the two stable equilibriums. A solution of Model
1 would tend to which of the two stable

equilibriums (S, , N, , P, Q) and
(S ; N ; , R; , Q; ) depends on the initial point.

equation  (22),

For the default values of Table 1 and using the
similarity conditions (11) with

Ip=1,=I=001, and
E\p=E, =€ =50 (values considered in
[1] for benthic communities) Model 1 has only
the upper stable equilibrivm (S; , N ; , P; , Q;)
with P, =Q; if kp=k,=60<04
(approximate), two (lower and upper) stable

equilibriums if 0.46 <@ < 3.0 (approximate)
and only the lower stable equilibrium
(S). N B Q) with B =0 if 623
(approx.). Obviously these results correspond to
variation in the attack coefficients of the two
predators. Similar results for the variation in the
immigration rates or the emigration rates of the
two predators can be stated. We mention here
only the results for the variation in immigration
rates. For the default values of Table 1 and

fixingkyp = Ky =6 =1.0,

123

andE,, = E\, =¢; = 5.0, Model 1 has only
the upper stable equilibrium with P, = QO if
Ly =1,=1<0.002

{lower and upper) stable -equilibriums if
0.0025< I < 0.1 (approximate) and only the

lower stable equilibrium (S, , Ny, B, Q)
with P1* = Ql* if I = 0.1 (approximate).

(approximate), two

For dissimilar predators, we agsume that the two
predators differ either in their attack coefficients
or immigration rates or emigration rates. Setting

I,=1,=1=001 and E; =E,=¢,=50,
it is seen that Model 1 has only the upper stable
(S5, Ny, B, 05)

ifk,p + 4k, <0.8, two stable equilibriums if

equilibrium

0.92 <k +ky <60 and only the lower
(S, NLBL,Q) if
kp+ le > 6.0. (These results may be easily

stable  equilibrium

compared with the corresponding results given
above for similarity conditions). Now fixing

kp =k =60=10, E, =E,=¢, =50

and considering the variation in immigration rates
only, it is found that Model | has only the upper

stable (S,,N,,B,0;) if
1y + 1, <0.004, two stable equilibriums if
0.005<1,+1,<0.2 and only the lower
(S, N, P ,Q) if
Ip+1,>02. In regards to equilibrium

equilibrium

stable  equilibrium

solutions of Model 1 based on the cmigration
rates of the two predators, it can be shown that

while large sum £, + E,, of the emigration
rates may lead to upper stable equilibrium, small
sums may produce only lower equilibrium. For
moderate values of the sum F |, +E1Q, lower
and upper both equilibriums may exist. To
illustrate, we display in Figure 4 the results based
on the sum 7, + [, of the immigration rates of

the two predators.




0.1

0.08

‘ {11P=0.001}+(11Q=0.002) < 0.004

\
\ \ : 0.005 < (P=0.004)+(Q=0.002) < 0.2
0.2 < (MP=0.1}+{11Q=0,2)

‘ .
01l I [ [ [ : . [ : l
0 20 40 80 80 100 120 140 160 180 200
5

! Figured.  Multiple equilibriums of Model I for different values of ([, + I, } the sum of predation coefficients
' of Pand Qwith s, =1.0,6'=1.0, s, =200.0, K =1.0, 12 =0.0001, ¢ =0.04, 8 =0.0004 .
kp=kyo=10Ep=E,;=50: 01, =00011,=0002=1,+1,<0.004; G
1p =0.004,1), =0.002 = 0.005< [,, +1,, <0.2; (i}, =0.1,/, =02 =
02<1,+1,. '

The general features noticed at the stable value at either equilibrium. For chosén feasible
equilibriums are as follows. At the lower stable parameter values as those in Tables 1 and 2, there

. * * El * : : 1 4 T
; T : 1s no evidence of exotic dynamics such as limit
| equilibrium (S, , N, , A, Q) prey sizes are Y

E cycles or chaos.

kept low by relatively high levels of total
predation (in reference to k,, = ky, =1.0) by Model 2 |
both predators or by relatively high levels of total It is obvious from Figures 3 and 4 that Model 2
immigration  rates  (in  reference  to has possibilities of having multiple equilibrium 3
I, =1, =001) by both predators or by solutions. More specifically it can have either

P = f1g T ke $k ok ok
¢ ' lower equilibrium (S, ,N, , A ,Q, )or

relatively low levels of total emigration rates (in Vo et =l

reference to K, = E,=5.0) by both upper  equilibrivm (S, , N, , P, Q5 )or

predators. At the upper stable equilibrium three equilibriums with an additional equilibrium ]
« " * 4 e ok . -

(S;, N;, P, Q) )there is a relatively high (S, , Ny, B ,Q,) in between. For the ]

density of large prey which are resistant to default parameter values for prey chosen from 1

predation. For this reason, two predators sustain Table 1 and considering any suitable parameter

at this equilibrium only with low equilibrium  Values for the two predators from Table 2, it is 1

values. It is seen that the predator whose attack seen that lower and upper equilibriums of Model

2 are stable where as the middle equilibrium is
always unstable. A solution of Model 2 would
(Iporl ]Q) is  higher or emigration approach to which stable equilibrium depends on

the initial point considered. Under the similarity
rate (E,, or Ey) is lower maintains its higher  conditions (14) based on the benthic community

coefficient (ky, or ky,) or immigration rate
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data considered in [1] it looks more likely (see
Figure 4) that Model 2 has only single stable
equilibrium. It can be either lower or upper
equilibrium depending on the particular set of
parameter values. In accordance with the benthic
community data considering equal immigration

rates for the two predators as /,p, = [,, = 0.01

and emigration rates as £,, = F.., =5.0 and
g 2P 20

assuming two predators differing in their attack
rates, it is found that if predator (0 has the

attack coefficient £,, =1.0 then any variation

in the attack coefficient k,, of predator P

0.2 |

increasing or decreasing from 1.0 does not affect
the number of equilibriums of Model 2. It still
has only single equilibrium as under similarity
conditions (14) though overall size of the prey
decreases with the increase in the attack

coefficient &, from 1.0and again the predator

which has higher attack coefficient maintains its
relatively higher population. On the other hand it
can be noticed that a decrease in the attack

coefficient of the predator O from 1.0 causes a

.change in the equilibrioms for Model 2 from one

to two stable equilibriums. We illustrate this fact
in Figure 5.

0]
0.15
|
X K2P=1.0 and K2Q=1.0 ‘
0.1 i
I K2P=1.0 and K2Q=0.0625
™,
\ KZP=1.0 end K2Q=0.03125 ‘
00| i
i\
|'.‘.
s1 % 81
I.‘\'\,‘ o 'SZ s3
' e
VY Ve
-0.06 Y P
LA /
o1 ' .
|
-0.18
\\.
! .
-0.2 f i I P \ 4 |
Q 20 40 &0 -] 100 120 140 160 180
5
Figure 5.  Single and multiple equilibriums of Mode! 2 for different attack coefficient kzg of Predator Q.

8, =10,0=1.0,s5,=200.0, K=1.0,4=0.0001, ¢ =0.04, #=0.0004.
Lp =1y =001 E,, = E,, =5.0:k,, =1.0 () &, =1.0, Gidk,, = 0.0625,

(i) k,, = 0.03125

We consider default parameter values for prey
from Table 1 and assign different sets of definite
values to the parameters

kypskygs Lops Lygs Epp and E,,of the two

predators such that Model 2 has two stable
equilibriums ie. lower stable equilibrium

(S:*:N;*,RM,Q;*) and upper stable
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equilibrium (S, , N, , B, , 05 ). Now,
numerous computer simulations are used to see
how any change (from the previous value) in a
single parameter of either predator affects the
equilibriums of Model 2. We summarize these

results in Table 3 below.

200
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Table 3.
of a predator.

Change in the equilibriums of Model 2 from two stable cquilibriums with variation in a single paranere

DIFFERENT CASES
CONSIDERED

PARAMETER

TYPE OF
VARIATION

EXISTING STABLE
EQUILIBRIUM(S)

Increasing T

Decreasing \L

o < g
kyp = kzg

kZP > kZQ

Decreasing »L
Increasing T

2 Decreasing Jr

Increasing T
Decreasing ~lr

Increasing T

Lower equilibrium
Upper equilibrium
Lower equilibrium
Lower and upper equilibriums
Upper equilibrium
Lower cquilibrium
Lower and upper equilibriums

Lower equilibrium

Table 3 seems to be suggesting a generic type of
picture from where outcomes for many other
combinations of parameter values may be
predicted. For example disturbing the various
parameter values in pairs from the two
equilibrium sityation following may occur.

(a) Only lower stable equilibrium
(S 1**, N, JF;**, Ql**) may be more likely
expected if
I,, T and I, Tor 1,, T and E,.dor
L, T and E,, 4o 1y T and E,pdor
1y T and Eyy dor E,, | and E,, e

(27)

(b) Only upper stable equilibrium

(S;g, N, P, Q;) may be more likely
expected if

Lydamd E,, T

(c) Both lower and upper equilibriums may
persist if

Izg L and Ezg T

We consider the following set of paran
values for prey from Table 1:5,=1.0, &

8,=200.0, K=1.0, ¢£=.0001, ¢c=04, F =01
Now we consider three sets of parameter v

for predators representing three cases foyp < A

kyp = k2Q and &, , >]62Q.

@) kop =10 kyp =2.0 1, =0.001 I, =0.000001 E,, =1.0 E,, =2.0.
(@ kpp =1.0 kyp =1.0 I, =0.001 I, =0.00001 E,, =1.0 E,, =5.0.
(i) kyp =2.0 kyp =1.0 1, =0.001 [,, =0.000001 E,, =1.0 £,, =5.0.

It can be seen that for each of these sets, Model 2
has three equilibriums ie. lower stable

equilibrium (S|, N O P]**, 0O, upper stable
equilibrium (S, , N N 0, )and middle
equilibrium (S, , N,", B,", 0)).

Further for each of these sets it can be shown that
any single situation from (27) causes Model 2 to

unstable

have only lower stable equilibrium. We consid.
only set (i) from (30) just as an illustration an:

three situations from (27) namely [, T and

fng, 1. T and E2Q~Land Ezf,l« and

E, ! and shown in Figure 6 thar under these

situations Model 2 indeed has only lower stable
equilibrium.
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Figure 6.

Refer to Caption of this Figure
E2P=0.5 and E2Q=1.0 o
12P=0.004 and E2Q=1.0 ! .
[2P=0.005 and E2Q=0.00001 i

| 1 | | | i
20 40 60 80 100 120 140 160 - 180
1

Some situations when Model 2 has lower equilibrium only. 8§y = 1.0,0= 1.0 s S = 200.0 ,

K=1.0, M= 0.0001, ¢ =0.04, ﬂ = 0.0004 . Continuous line graph corresponds to the set of
parameters kzp =1.0, kzg =20, Izp = 0.00], Izg =0.000001 , EZP = I.O,and

E

0.1
0.08
.
0.96
Q.04

Q.02

20 = 2.0.Other graphs correspond to changes in a pair of parameters as indicated.

12P=0.0008 and E2FP=1.5
i Refer to Caption of this Figure

Y i . 83

(b)

Fi8)
(=]

-0.02

-0.04

-0.06

~0.08

-0.1
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Figure 7.

K =10, £=0.0001, c=0.04, = 0.0004 . Dash-dot line graph corresponds to the set of parameters

81 .82 sa

' 1 ! | |
20 40 60 80 100 120 140 160 180
S

Some situations when Model 2 has upper equilibrium only. §, = 1.0,0=1.0, S, = 200.0,

k,»=10, kzg =1.0, Izg =0.00001, E,, =1.0,and EZQ = 5.0 . Other graph corresponds to

changes in a pair of parameters as indicated.
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Figure 8.  Some situations when for Model 2 two stable equilibriums persist. Dash-dot line graph corresponds ¢

the setofparameterskzp =2.0,k2Q = I.O,IZP = 0.001, IZQ = 0.000001, EZP =1.0, and

Ezg =5.0. Other graph corresponds to changes in a pair of parameters as indicated

Again as an illustration, possibilities of upper
stable equilibrium and persistence of two stable
equilibriums of Model 2 under conditions (28)
and (29) are displayed in Figures 7 and & for the
sets (if) and (iii) from (30) respectively.

CONCLUSIONS

We consider predation dynamics of spatially-
structured species of benthic community in this
paper, We generalize a model of [1] and extend
its scope to three species of benthic community
namely: mussel (as prey), sea star {(as one
predator) and spiny lobster (as second predator).
We analyze two models designated Model 1 and
Model 2. Model 1 is developed under the
assumption that the prey (mussel) reaches a
certain size and becomes resistant to both
predators. Model 2 represents a situation when
the large size preys become resistant to one
predator but remain vulnerable to the other. It is
seen that for the default data of benthic
community reported in [1] and reproduced in this
paper in Table 1 and 2, both Model 1 and 2 have
possibility of multiple equilibrium solutions.
More specifically, each model may have one or
three equilibriums. One may refer to sections 3
and 4 for some of the important features of the
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results of these models which may
summarized as follows -

Model 1 (when the prey grows to a certain s

and becomes resistant to both predators)

»  Whenever Model | has single equilibri
(designated lower or upper in this papcr) i
stable.

e  Whenever Model | has three equilibriu
{designated lower, middle and upper in
paper) the lower and upper equilibriums
stable while the middle one is unstable,

e Under the similarity conditions (11) wl
the two predators have equal predats -

ku, =kIQ =6, equii

immigration rates [, = [, =/ and cq

coefficients

emigration rates F,, = ElQ =e,, it
found that the wvariation in one of tin
parameters {&, I, e, } while fixing the oth.r
two may cause a change in the equilibrivms
from one to two stable equilibriums or vice
Versa.

» TFor dissimilar predators, it is seen that the

change in the equilibriums of the model from
one to two stable equilibriums or vice versa
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may occur by the variation in the values of
one of the sums

{(kip +hig)s Uip +11p)s (Eyp + Erg)}
while having the other two fixed,

It is seen that at the lower stable
equilibriums, the prey sizes are kept low by
relatively high levels of predation by both
predators or high levels of immigration rates
of predators.

It is found that at the upper stable
equilibriums, there is a relatively high
density of large prey which are resistant to
predation.

It is observed that the predator whose attack
rate or immigration rate is higher or
emigration rate is lower maintains its higher
population at either equilibrium.

Model 2 (when the large size preys become

resistant to one

predator but remain

vulnerable to the other predator)

Whenever Model 2 has single equilibrium
{(designated lower or upper in this paper) it is
stable.

Whenever Model 2 has three equilibriums
(designated lower, middle and upper in this
paper) the lower and upper equilibriums are
stable while the middle one is unstable.
Under the similarity conditions {14) when
the two predators have equal predation

coefficients k,, = k Z‘Q =6, equal

immigration rates [, =1,, =1 " and

I i
equal emigration rates E,, = E,, = ¢, , it

is found that the model has the possibility of
a single equilibrium only. It may be either
lower or upper stable equilibrium.

For dissimilar predators it is observed (in
reference to the benthic community data of
[1]) that any variation in the attack
coefficient of the predator to which large size
preys become resistant does not affect the
number of equilibriums of the model. On the
other hand a wvariation in the attack
coefficient of the predator to which large size
preys remain vulnerable may cause a change
in the equilibriums from one to two stable
equilibriums or vice versa.

It is seen that a variation in the immigration
rate or emigration rate of any one predator
may also affect the number of equilibriums
of the model. We give a generic type picture
for change in equilibriums for such
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variations in Table 3. From these results we
present some other combinations of
parameters which can also effect the change
in the equilibriums of the model.

It may be mentioned that we observe no evidence
of any exotic dynamics such as limit cycles or
chaos for both of our models for the chosen data
of benthic community from [1].

10.
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