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Water Level Data Modeling with Bilinear Time Series Analysis
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ABSTRACT  In the literature, many time series data, such as the economic and hydrological data,
show various nonlinearity characteristics. The Keenan's test and F-test are employed in identifying a
nonlinear data set. This article looks at the modeling of nonlinear time series data using bilinear time
series model. The model is an extension of autoregressive model such that an extra term representing the
bilinear characteristic is introduced. The estimation of bilinear models is obtained using nonlinear least
squares method. As an illustration, analysis on water level of Sungai Kelantan using the above method is
presented.

ABSTRAK Di dalam literatur, wujud data siri masa, seperti data ekonomi dan data hidrologi, yang
menunjukkan pelbagai ciri-ciri tak linear. Ujian Keenan dan Ujian—F digunakan untuk mengenalpasti set
data tak linear. Artikel ini melihat kepada pemodelan data siri masa tak linear menggunakan model siri
masa Bilinear. Model ini merupakan model yang lebih am daripada model autoregresi di mana sebutan
tambahan bagi mewakili ciri bilinear diperkenalkan. Penganggaran model bilinear diperolehi dengan
menggunakan kaedah kuasa dua terkecil tak linear. Sebagai ilustrasi, analisis ke atas data aras sungai
Kelantan dengan menggunakan kaedah di atas dibentangkan.

(Bilinear, nonlinear least squares method, hydrology)

INTRODUCTION comparative study between ARIMA and bilinear
modeling is discussed.

Water level has been used as an indicator to the
occurrence of flooding. The univariate Box-

Jenkins approach based on ARIMA modeling has

DATA COLLECTION

been used in many applications. A good account
of the approaches is available in, inter alia, Box
and Jenkins [1], Fuller [2] and Chatfield [3].
However, there are time series data, including
water level data, which are not suitable to be
fitted by linear models. Such examples are the
Castle River flow data in Alberta, Canada (Oyet
[4]) and the average monthly flows of the Fraser
River in British Columbia (Lewis and Ray [5]).
These data should be fitted better by nonlinear
models such as bilinear models. In this article, a
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Records of daily water level data at the Sungai
Kelantan were obtained from the Department of
Irrigation and Drainage of Selangor from 20
April 2001 till 22 September 2001. Figure 1
gives the plot of the data. The dashed line
represents the mean of the data which equals to
9.003. The length of the data is 156. The east
coast of Peninsular Malaysia is known to have a
north-west monsoon during this period and has
dry months in June and July. This is reflected in
Figure 1 whereby the water levels are below the
mean from middle of June till end of July.
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Figure 1.  Plot of daily mean water level data Figure 2.  The ACF plot of the water level data
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Figure 3.  The PACEF plot of the water level data Figure 4.  Plot of first differenced data
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Figure 5.  The ACF plot of first differenced Figure 6.  The PACF plot of first differenced data
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Figure 7.  Plot of second differenced data Figure 8.  The ACF plot of second differenced data
1.0
0.8+
0.6
0.4+
02
§0.3 #Jll]bll||f5|‘l2lﬂl
2 I TR
0.4
0.6
08 Log
-1.0-
Figure 9.  The PACF plot of second differenced data

ARIMA MODELING OF THE WATER
LEVEL

The ACF and PACF plots of the original data are
given by Figure 2 and Figure 3 respectively. It
can be seen that the autocorrelations values die
out very slowly suggesting that the original data
is non-stationary. Hence, differencing of data is
needed.

The plot of first differenced data and its ACF and
PACF plots are given by TFigures 4-6
respectively. However, it is difficult to identify a
possible model for the data based on the ACF and
PACF plots. Both plots have non-significant
values of the first lag but significant values of the
second lag. The plot of second differenced data
is given in Figure 7. The ACF and PACF plots of
the data are given in Figures 8 - 9. The
magnitude of the PACF values is less than 4 and
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the PACF values die out after 7 lags. There are
two large ACF values for the first two lags. The
possible model for this data is ARIMA(0,2,2).
The parameter estimates are 0.826 and 0.173 with
the t-ratio values are 10.41 and 2.18 respectively.
At 5% significant level, the critical value is 1.65
obtained from the #-distribution with 154 degree
of freedom. Thus, both parameters should be
included in the model. The ACF and PACF plots
of the residuals are given in Figure 10 and Figure
11 respectively. Only the ACF and PACF values
at lag 2 are significant. The residuals can be said
to follow white noise process. The Ljung-Box
statistics at lags 12 and 24 are 16.286 and 21.135
respectively whereas the 5% critical values based
on the chi-square distribution with 10 and 22
degrees of freedom are 18.307 and 33.924
respectively. Hence, The Ljung-Box statistics do
not suggest any inadequacy of the model.




Malaysian Journal of Science 25 (1): 73 — 78 (20006)

To check on the normality of the residuals, the
correlation test between the residuals and the
normal scores is carried out. The correlation
value is 0.928 which is below the corresponding
5% critical value of 0.987. This suggests that the

normality is not totally satisfied. From the
histogram of the standardized residuals given in
Figure 12, there are quite a number of positive
high residuals which are due to the high spikes in
the original data.

Figure 10.  The ACF plot of residuals

Figure 11.  The PACF plot of residuals
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Figure 12.  The histogram of the standardized residuals

Other linear models are also fitted in order, if
possible, to improve the modeling. They will be
compared based on three types of order selection
criteria.  They are the Akaike's information
criteria denoted by AIC (see Akaike [6]),
Akaike's Bayesian information criteria denoted
by BIC (see Akaike [7]) and Schwarz's criteria
denoted by SBIC (see Schwarz [8]). The
possible models that improve the modeling are
listed in Table 1. It can be seen that

ARIMA(0,2,3) reduces the AIC, BIC and SBIC
values the most. The coefficients values are
0.9354, 03549 and -0.2911 which are all
significant at 5% significance level. The Ljung-
Box statistics do not suggest any inadequacy of
the model. The correlation between the residuals
and normal scores is 0.943. Although this
correlation value is still not significant, it is better
than that for ARIMA(0,2,2)
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Table 1.  Summary of results of selected linear models
MODEL AIC BIC SBIC VAR
ARIMA(0,2,2) 13.51 -421.05 -423.05 0.06225
ARIMA(0,2,3) 5.75 -424.81 -427.81 0.05846
ARIMA(1,2,2) 12.61 -417.95 -420.95 0.06108
NONLINEARITY TEST ARMA (p,q) is a special case of the BL(p,q,7,s)

The Keenan's test (see Keenan [9]) and the F-test
(see Tsay [10]) are used to investigate whether
the water level data belongs to a nonlinear model.
Both tests suggest that the data is nonlinear with
p-values 0.00001 and 0.00003 respectively. This
should be true as the data contains several spikes
which will not be explained fully by any linear
model.

BILINEAR MODEL

The general bilinear
BL(p,q,r.s), is given by

model, denoted by

4 q ros
Yp=2aily 1+ 2cje j+ X 2hpty pepte
i= Jj=1 k=1)=1
)

where a;.¢;

assumed to follow normal distribution with mean
zero and precision 7, 7 > 0. The first two
components on the right-hand side of (1) are
basically the ARMA model with parameters p
and g. The second last component is nonlinear
which helps to explain the nonlinearity
characteristic of the data being modeled. Thus,

and by, are constant, and e,'s are

when r=s=0. In this article, the parameters of

bilinear models are estimated using the nonlinear
least squares method as suggested by Priestly
[11].

Several bilinear models are fitted on the data.
The diagnostic results based on the AIC, BIC and
SBIC together with their respective residual
variances are given in Table 2. It is clear that
either BL(2,0,1,1) or BL(1,1,1,1) have lower
values of the order selection criteria compared to
the other two models. The parameter estimates
of the fitted BL(1,1,1,1) model are a; = 0.7692, ¢,
= 0.4882 and by = —0.3942. The correlation
between residuals and normal scores is 0.9124,
The correlation value is lower than that of
ARIMA(0,2,2) or ARIMA(0,2,3) models. Again,
the existence of few outliers might affect the
results of normality test. The histogram of the
standardized residuals is given in Figure 7. As
for BL(2,0,1,1) models, the parameter estimates
are a; = 1.2803, a, =—0.3928 and b;; = —0.4802.
The correlation between residuals and normal
scores is 0.909 which is lower than that for
BL(1,1,1,1) model.

Table 2.  Summary of results of selected bilinear models
MODEL AlIC BIC SBIC VARIANCE
BIL(1,0,1,1) -3.279 -437.888 -439.888 0.0559
BL(2,0,1,1) -17.112 -447.671 -450.671 0.0505
BL(3,0,1,1) -16.963 -443.473 -447.473 0.0499
BL(1,1,1,1) -17.938 -448.498 -451.498 0.0502
Table 3. Summary of diagnostic results
MODEL AIC BIC SBIC VARIANCE
BL(1,1,1,1) -17.94 -448.50 -451.50 0.05022
ARIMA(0,2,3) 5.75 -424.81 -427.81 0.05846
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MODEL COMPARISON

Table 3 gives the summary of diagnostic results
based on BL(1,1,1,1) and ARIMA(0,2,3) models.
It can be seen that, in general, bilinear models
improves the modeling if compared to the fitted

. . . A2
linear models. For variance of the residuals, o,

the reduction by 14.1% is observed. The values
of AIC, BIC and SBIC are also reduced. Hence,
we can conclude that bilinear modeling improves
the modeling compared to the best linear model.

CONCLUSION

The application of bilinear modeling has been
illustrated by the Sungai Kelantan water level
data. Results from the nonlinearity test confirm
that the data is nonlinear. The results further
show that bilinear model fits the data better if
compared to best fitted linear models.
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