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ABSTRACT In this paner we propose four methods based on Genetic Algorithms for Vehicle Routing
Problems. It is observed that algorithms that construct the routes sequentially produce superior results
compared to parallel route building methods. In general, savings GA performs well for all the problems
tested whilst vertex sequencing method produces superior solutions for small problems.

ABSTRAK  Di dalam makalah ini kami mengutarakan empat kaedah yang berasaskan Algoritma
Genetik bagi Masalah Perjalanan Kenderaan. Kami mendapati bahawa algoritma yang membina jalan
secara jujukan menghasilkan keputusan yang lebih baik daripada kaedah pembentukan jalan secara selari.
Secara amnya, kaedah penjimatan GA memberikan persembahan yang baik bagi semua masalah yang
diuji sementara kaedah jujukan bucu memberikan keputusan yang lebih baik bagi masalah yang kecil.

(vehicle routing problems, genetic algorithms, heuristic methods)

INTRODUCTION but on achieving relatively good solutions in
reasonable amount of times. Consequently

Vehicle Routing Problems (VRP), which was research has been devoted to developing effective
first described as Truck Dispatching Problems by heuristic methods and metaheuristics that will
Dantzig and Ramser (1959), lie at the heart of the allow large problems to be solved reasonably
distribution management. They involve quickly.
designing optimal delivery routes, originating
and terminating at one or several depots, for a Metaheuristic algorithms are iterative generation
fleet of vehicles that services a number of processes that guide a subordinate heuristic by
geographically scattered cities or customers combining, intelligently, different concepts for
subject to various side constraints. A common exploring and exploiting the solution search
objective therefore is to find a set of routes for space. Metaheuristics include, among others,
vehicles that satisfies a variety of constraints so Tabu Search, Simulated Annealing and Genetic
as to minimise the total fleet operating cost. Algorithms.

The area of VRP has been intensively studied and Genetic Algorithm (GA) is a stochastic search

a rich literature exists in the bibliographies technique that closely mimics the metaphor of
contained in Laporte and Osman (1995). natural biological evolution. GA explores the
Applications of VRP cover a broad spectrum of problem domain by maintaining a population of
problems such’ as school bus routing, design of individuals, which represents a set of potential
dial-a-ride systems, collection of mail from mail solutions in the search space. The survival of
boxes, distribution of gas industrial systems, each individual into the next generation is
snow ploughing, winter gritting, etc. determined by its fitness. The fitness of an

individual is a performance measure based on an
Since VRP has been shown to be NP-hard, the objective function that describes the problem. At

computational time for exact algorithms for each iteration, new individuals (offspring) are
relatively large problems is likely to be created by selecting old individuals according to
prohibitive. Furthermore, in most real world their fitness and breeding them using genetic
problems, the emphasis is no longer on getting operators similar to natural genetics.  The
the optimum value (which is often not known) selection is carried out based on the principle of
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the survival-of-the-fittest ~ where  stronger
- individuals are allowed to participate more in the
reproduction of new individuals than the weaker
ones, who may not even contribute at all. Using
genetic operators, GA attempts to combine the
good features found in each individual using a
structured yet randomised information exchange
in order to construct individuals which are better
suited to their environment than the individuals
from which they were created. Through the
evolution of better individuals, it is hoped that the
desired solution will be found.

In the last few years there has been a surge of
interest in using GA, or techniques which are
reminiscent of GA, in solving VRP and its related
problems (Thangiah et al. (1993, 1995), Blanton
and Wainwright (1993), Potvin and Bengio
(1993), Potvin and Dube (1994), Stefanitsis et al
(1995), Badeau et al (1996) and Chua et al.
(1996)). In particular, the algorithm proposed by
Badeau et al. (1996) which constructs an
algorithm that follows some rules reminiscent of
GA. They first decompose the initial solution into
several subproblems, and each subproblem is
optimised independently using a Tabu Search
heuristic. Good solutions found in each
subproblem are recorded after several
decompositions and reconstructions.  These
solutions are concatenated to form a new
solution’This stage is performed using a form of
selection and recombination similar to GA.

Stefanitsis et al. (1995) and Chua et al. (1996)
represented a VRP using the concept of relaxed
TSP. Here, the solutions to VRP are represented
as a TSP and the depots are encoded as multiple
zero nodes having an infinite distance from each
other. Stefanitsis et al., proposed an algorithm
based on Constraint Logic Programming, which
~ combines some aspects of Logic Programming
from Artificial Intelligence and some constraint-
satisfaction techniques, in order to produce good
initial solutions before GA is applied.

In this paper we propose four new methods based
on GA for VRP. The paper is organised as
follows: The notations and necessary

terminologies are introduced in the following
section. Then, the algorithms are described in the
subsequent section. This is followed by results
and discussions. The results for all the
benchmark problems in the literature are
presented in the subsequent section and finally,
conclusion is given in the last section.

PROBLEM DEFINITION

Let G=(V,A) be a graph where ¥={0,1,2,...,N} is
a set of vertices representing customers with the
depot located at vertex 0, and A is the set of all
arcs. We associate a non-negative distance (or
sometimes referred to as cost) matrix C=(c;) with
every arc (i), i [J J. ¢; represents the distance
travelled (or the cost of travelling, or the travel
time), from city i to city j. Note that when C is
symmetric, i.e. the distance from city i to city / is
the same as the distance from city j to city i, it is
often convenient to replace a set of arcs 4 by a
set of undirected arcs or edges E. Note that the
travel time from city i to city j is commonly
assumed to be proportional to the distance
between the two cities.

It is also assumed that there are m vehicles
available which are based at the depot and m is
bounded respectively by the maximum and

minimum number of vehicles available, m2;, and
m,, ie. my Sm<my. When m; =my,
then m is said to be fixed, and to be free when
m, =1landm; = N—1 where N is the size

of the problem. In addition, it is often desirable to
associate a fixed cost f with the use of a vehicle
when m is not fixed. However, in most of the
problems tested, the cost is ignored unless
otherwise stated. It is also assumed that all the
vehicles have the same capacity (homogeneous
vehicles), although in some variants of the basic
VRP it is possible for vehicles to have different
capacities (heterogeneous vehicles).

Therefore, the VRP consists of designing a set of

least cost routes in such a way that the following

conditions are satisfied:

(i) Each city in V\{0} is visited exactly once by
exactly one vehicle

(ii) All vehicle routes start and end at the depot

(iii) Some side constraints are satisfied

(iv) The number of side constraints which can be
considered in VRP is large. Bodin et al.
(1983) and Golden and Assad (1988) give
excellent reviews of the many variations of
VRP.

APLICATION OF GA FOR VRP
We will now describe the four algorithms that we

have developed for the VRP. We note that the
main difference between these procedures is the
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way in which problem-specific knowledge is
embedded in the structure of the algorithm.

The first approach implements the improvement
methods suggested by Ulder et al. (1991). The
results reported by Ulder et al. (1991) using this
approach on a set of Traveling Salesman Problem
for up to 662 customers have been very
encouraging. On the other hand, the second, third
and fourth approaches employed the construction
heuristic methods developed for VRP in the
assignment of customers to clusters. These three
methods differ in the criteria used in constructing
the clusters and also the way in which the clusters
are built, i.e. either sequentially or in parallel.

Sequential Methods

L. Vertex Sequencing

In this method, the VRP is represented as a
Traveling Salesman Problem. Following the
order of the customers in each chromosome, the
customers are assigned to a vehicle until adding
the customer to that particular vehicle violates
either the capacity or the route length constraint
of that vehicle. In such cases, a new vehicle is
initiated. In this approach we assume that the
number of vehicles to serve all customers is not
bounded, thus ensuring that all solutions obtained
are feasible. Subsequently, each chromosome in
the population is locally optimised using the 2-
opt method, proposed by Lin (1965). We note
that the chromosome is first partitioned using the
clusterbuilder —and the chromosomes are
optimised locally with respect to the way they are
partitioned. Each individual in the population
thus represents a local optimum, and the idea is
that combination of these local optima through
the process of selection and recombination will
hopefully lead to a better local optimum, and will
eventually converge to a global optimum.

The clusterbuider partitions the customers based
on a tour construction heuristic of the route-first,
cluster-second approach (Beasely, 1983).
Assuming that the sequence of customers in a

chromosome is give by (vi, V2, ...,Vi, Vits +..,
Vv,) and starting form v, where vV denotes a

depot, the clusterbuilder assigns the customers to
the vehicles (or clusters) as follows:

The first vehicle contains all customers starting
Jrom the first customer on the tour and up to, but

excluding, the first customers V ; whose inclusion

in the route would cause a violation of either
capacity or maximal length constraint. Then

starting from V ,, the process is repeated until all

customers have been allocated a vehicle.

The objective value of each chromosome is
evaluated as (Gendreau et al., 1994)

F(8)=3, (Véiu

r

F(s)=F, (S)“‘ZH Z%]—QI

vieR,

+[32[[ > o, + ZS,]—L}
r v, kR, v,eR,

where [x]" =max (0,x) ; o and p are two positive
parameters, R is the set of all the routes and O
and L are the maximum load of each vehicle and
the maximum length constraints for each vehicle
respectively. We note that the route length
consists of the travel distance (in this case it is
assumed to be proportional to the distance
between the two cities) and the service time ;.

(D

An upper bound on the number of vehicles, 7 ,
for each problem instance is determined
according to some rules. In our implementation
the algorithm is run once without imposing any
restriction on the number of vehicles and the
maximum number of vehicles required for the
solution to be feasible is selected. The values of
the parameters have been chosen arbitrarily.

Although the initial populations, in most of the
GA-based algorithms, consist of randomly
generated individuals, in difficult problems such
as VRP it would be advantageous to start with
some structured solutions and this has been
shown to produce better solutions in the context
of the TSP (Ulder et al., 1991). To accomplish
this, simple heuristics based on some of the

~ construction heuristics for VRP can be used to

generate reasonably good initial structures for the
first population. It is observed that an algorithm
starting from a randomly generated solution, on
average, requires a larger population size in order
to converge to the desired solution. In our
implementation a restricted 2-opt heuristic is
used to initialise the starting population. A
restricted 2-opt ensures that the computational
time taken in initialising the population is not
exhaustive. Also, this creates an initial
population with some structures  whilst
maintaining some degree of diversity within the
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population. Consequently, this helps prevent
undesirable premature convergence to some sub-
optimal values.

II. Savings GA

In this procedure we investigate the possibility of
designing a clusterbuilder that assigns customers
to a vehicle in a deterministic way instead of
following the order of their appearance in the
chromosome. This is achieved by using the
existing constructive heuristics such as the
savings method of Clark and Wright (1964).

In the savings method, initially all the customers
are assumed to be served by one vehicle and the
saving obtained if two customers are merged on a
route are calculated according to the equation
(Paessen, 1988)

S, = oy +Co; —01Cy +92(c0i+c0j) )

for i, j=1,2,..,N and 6,e[t,3] and 8, €[0,1]-
This ensures that the radial distance, the distance
between the customers and the depot, is also
taken into account. Preliminary experiments
have indicated that the quality of the final
solutions is sensitive to the choice of 6, and 0.
Generally, taking 6, around 1.5 and 6, around 0.5
produges satisfactory results.

In the savings heuristic, the savings obtained for
each pair of customers are arranged in
descending order and the customers are merged
into a cluster starting from the highest to the
lowest savings as described in the savings
method proposed by Clark and Wright (1964).
This procedure cannot be implemented directly in
GA since it not only requires a lot of
computational time, but also produces a single
solution regardless of the sequence in the
chromosome. Therefore the clusterbuilder has to
be modified accordingly to suit GA. We will
now describe the new clusterbuilder implemented
in savings GA.

Starting with the first customer on the sequence
as the current customer, the savings obtained
when it is merged with other customers on a
single route are calculated. The customer with
the most savings is selected. If the selected
customer has already been routed, then the
customer with the next best savings is chosen.
Then, taking this new customer as the current
customer, the procedure is repeated until either
the capacity or the route length of the vehicle is

violated. In such circumstances, the firs

‘customer on the sequence that has not been

routed is assigned to the next vehicle. The
algorithm iterates until all the customers have
been allocated to a vehicle or the number of
vehicles used is M —1 in which case the
remaining customers that are not yet routed are
assigned to vehicle m .

After all the customers have been routed, the
objective value of each chromosome is evaluated
as in equation (1).

Parallel Methods

Most sequential-based heuristics are concerned
with building good clusters at the beginning of
the process. As a result, they tend to leave to the
end customers that may be far apart from each
other geographically. Inevitably, this produces a
last route which is of poor quality. This has been
recognised as the intrinsic ~weakness of
sequential-based methods (Potvin and Rousseau
(1993), Altinkemer and ~Gavish (1991)).
Algorithms that  construct several routes
simultaneously, often referred to as parallel route
building methods, have been proposed to
alleviate this problem. In this paper we examine
two parallel route building methods or parallel
methods based on GA.

1. Set Partitioning Approach

One of the methods we have studied is based on
algorithms proposed by Jones and Beltramo
(1991) designed for partitioning problems. This
idea was first investigated by Blanton and
Wainwright (1993) for VRP with time windows.
In this procedure, as with any other parallel
clusterbuilding methods, the number of vehicles
required must be predetermined. In our
implementation this is done by taking the number
of vehicles found in the sequential approach as a
starting point. The algorithm is then run several
times to determine the appropriate number of
vehicles. In cases where no feasible solutions are
obtained in any of the runs, the number of
vehicles is then increased by one and a similar
process is carried out until the probability of
getting feasible solutions in each run is relatively
high. In GA selecting the correct number of
vehicles is vital since, unlike other parallel-based
heuristics, the number may not be reduced
throughout the runs. Our implementation adapts
the approach proposed by Blanton and
Wainwright (1993).
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The algorithm uses a greedy heuristic, which
constructs the routes by taking the first m
customers (where m is the number of vehicles
available) in the permutation to initialise each
vehicle. The remaining customers are added to
the vehicles in the order they appear in the
chromosome, always adding to the vehicle that
yields the best objective value. This strategy
resembles the rnearest neighbour rule whereby
each customer assigned to a vehicle is chosen to
be closest to the customer last assigned to that
vehicle. Since our sole objective is to minimise
the total route length, this is achieved by taking

V*=arg{k£?énmcih}’ i=m+10 ,N Where i is the

burrent customer to be inserted and / & is the last

customer that appears on route k. Customer i is
added to vehicle v* only if inserting this
customer does not violate either the capacity or
the route length constraints of vehicle v *, else
the customer is considered to be unserviced. An
objective value for each chromosome is thus
defined as follows:

u if >0
F(S)= Z Zc,.j—M otherwise (3)

r=l (v,v))eR,

where u is the number of customers that are
unserviced and M is a very large positive
constant.*Note that if the solution is feasible, a
large negative constant, - M, is added to the total
route length to ensure that the solutions are
ordered in the correct manner. The value of M is
chosen such that it always exceeds the total route
length. In our implementation, as in Blanton and
Wainwright (1993), a constant of 100000 is
chosen since in all cases the total route length
obtained never exceeded this value.

II. Parallel Savings GA

The final method we developed is similar to the
set partitioning procedure except that a different
measure is used to allocate the subsequent
customers to the vehicles. This idea is similar to
the parallel insertion based on savings method
described in Altinkemer and Gavish (1991).
Here, starting from the first customer in the
chromosome, for each customer i that is not yet
routed, the saving obtained when i is connected
to the last customer on each vehicle is calculated,
and the customer is then assigned to the vehicle

giving the largest saving. A vehicle v* is
therefore selected according to the criterion

w=arg{max s, }, i=m+10,N Where s, s

the saving obtained when customer i is connected
to the last customer on route k. The savings are
calculated as in equation (2).

We note that if adding customer i to a particular’

vehicle results in an infeasible solution due to
violation of one of the constraints, then the next
vehicle, in descending order of savings, is
selected. If adding customer i to each of the
vehicles in turns violates one or all of the
constraints, then this customer is considered
unserviced and a penalty is incurred on the total
amount of unserviced demand. Hence, the new
objective function can be written as

F(S)=Z Z Cij +an, (4)
r o (vi,v;)eR, =1

where u is the total number of unserviced

customers.

RESULTS AND DISCUSSIONS

We evaluated the performance of these
algorithms on three sets of problems that exhibit
different characteristics. The 50-customer and
the 150-customers problems are randomly
generated whilst the locations of the customers in
the 100-customers problem are arranged in
clusters.

Each algorithm was simulated for five times
with different random number generators and the
variables such as population size (N), crossover
rate, mutation rate, selective pressure and
insertion rate were fixed at 50, 0.8, 10/N, 1.5 and
0.8, respectively, for both algorithms. We used
stochastic universal sampling method to assign
for each individual the expected number of
offspring to be produced in the next generation.
The fitness of each individual was assigned using
the non-linear ranking method (Chipperfield et
al., 1993) and the reproduction strategy ensures
that the least fit individuals are replaced by the
offspring.

For the vertex sequencing method we have
adapted the modified enhanced edge
recombination operator ‘whereby the edge that
connects the first and the last customer and those
connecting customers on two separate vehicles
are omitted in the construction of the edge list.
The order-based crossover was employed in the
savings GA. Uniform order-based crossover is
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applied in both the set partitioning and parallel Tables 1 - 3 tabulate the best, the worst and the

savings GA. Scramble sub-list mutation was average solutions found over the five runs, the

applied in all the algorithms and all algorithms standard deviation and the average CPU times for

were terminated after 150 iterations. each algorithm. Figures 1 —3 display the average
performance of these algorithms for each of the
problem tested.

Vertex Segquencing. |
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Figure 1. Average performance of various methods for the 50-customers problem
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Figure 2. Average performance of various methods for the 150-customers problem
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Table 1. Results for 50-Customer Problem

Methods Best Worst Average Standaid Average
Deviation CPU (secs.)
Vertex Seq. 524.61 524.93 524.67 0.14 1842.34
Savings GA 565.31 585.71 571.82 8.70 1023.34
Set Partitioning 665.00 737.00 695.80 26.94 802.52
Parallel Savings 583.55 605.35 602.24 16.71 1472.58
Best Published Results:  524.61
Table 2. Results for 150-Customer Problem
Methods Best Worst Average Standard Average
Deviation CPU (secs.)
Vertex Seq. 1201.70 1254.10 1222.86 21.03 8886.88
Savings GA 1163.90 1185.80 1177.27 8.23 4202.90
Set Partitioning 1792.40 infeasible - - -~
Parallel Savings 1546.50 1775.60 1611.32 97.03 15347.8
Best Published Result:  1034.9
Table 3. Results for 100-Customer Problem (Clustered)
Methods Best Worst Average Standard Average
Deviation CPU (secs.)
Vertex Seq. 956.74 10004.10 981.95 16.86 4224.26
Savings GA 880.86 895.76 886.34 6.29 2679.30
Set Partitioning 928.00 1016.00 986.00 35.74 2609.6
Parallel Savings 1003.20 1121.90 1043.96 54.45 4525.36
Best Published Result:  819.6

The graﬁh§ show that the vertex sequencing
approach converged to better solutions for
problems with fewer customers. In contrast, the
savings GA method performs well for larger
problems, with the set partitioning approach
converging to a better solution than the parallel
savings method for the clustered problems. Also,
it is observed that savings GA starts with superior
solutions due to the effectiveness of the savings
method, but for small problems, it is quickly
overtaken by the vertex sequencing approach.
The improvement in the savings GA is very slow
compared to the other methods. The poor
performance of the vertex sequencing approach
in larger problems may be attributed to the
effectiveness of the underlying local optimiser. It
is also noted that the set partitioning approach
starts with superior solutions than either the
vertex sequencing or parallel savings method for
the 150-cluster problem. This may be attributed
to the fact that the clusterbuilder places great
emphasis on the distance between the customers.

In general, the tables show that the vertex
sequencing method requires more computational
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time than the savings method because of the
underlying 2 -opt heuristic. The set partitioning
approach requires the least computational time
with the parallel savings GA takes the longest
time. The 2 -opt heuristic is known to be less
effective and the very large computing time
involved prevented us from experimenting with
more effective local search methods. It is also
observed that the set partitioning and the parallel
savings methods give large standard deviations
compared to the other two methods, which is
undesirable.

One of the interesting characteristics displayed
by vertex sequencing, savings GA and parallel
savings GA is that the solutions iterate between
feasibility and infeasibility, since these methods
allow the algorithm to accept infeasible solutions
if the reduction in the objective value is
significant enough. However, in the case of set
partitioning, the algorithm is more concerned
with finding a feasible search space and once this
is found, the algorithm constrains the search to be
within this area only. This approach is
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particularly effective for VRP with time windows
(for which the original algorithm was developed)
where a feasible solution is hard to obtain
because of the added constraint imposed for each
customer.

As mentioned earlier, one possible cause of the
poor performance of the parallel methods is that
the first K customers that were used to initialise K
vehicles may consist of customers that are close
to each other. Indeed this is undesirable since
more vehicles will be used to serve these
customers, which may in fact require only one
vehicle to serve them.

We note that all the programmes were written in
MATLAB using the genetic algorithm TOOL
BOX (Chipperfield et al., 1993). All programmes
were run on Silicon Graphic computer.

BENCHMARK PROBLEMS

- Since vertex sequencing and savings GA perform
relatively better than the other two algorithms,
we evaluated the performance of these two
algorithms on the 14 benchmark problems given
in the literature. We note that Problems 1 to 10
are uniformly randomly generated problems and
problems 6 to 10 are the same as Problems 1 to 5
with the additional of route length constraints.
The lodations of the cities in Problems 11 to 14
are arranged in clusters with problems 13 and 14
incorporating the route length constraints.

The algorithms were simulated for several runs
and Table 5 tabulates the best published solutions
from Gendreau et al. (1997), solutions from Kelly
and Xu (1999), solutions obtained from our
algorithms, the number of vehicles required and
the percentage deviation from optimum solutions
(or best published result) for all the benchmark
problems. The value of the parameters for the
results shown in Table 5 is given in Table 4.
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A smaller population were selected for vertex
sequencing method because of the time
consuming 2-opt heuristic. We note that allsthe
programmes were terminated after 250 iterations
and other parameters such as the selective
pressure (the bias towards the best individual),
crossover rate and insertion rate were fixed at
1.5,0.8, and 0.8 respectively.

It should be noted that the penalty constant is
fixed at 1.0. In situations where no feasible
solutions can be(found, the penalty constant is
increased to 100 ‘and if the-algorithm still fails to
find a feasible solution, then the parameter is
increased to 1000. The maximum number of
vehicles is always chosen to be one more than the
number of vehicles required in the best published
solution. The main idea here is to reduce the
effect of the penalty constant as much as
possible, since the choice of a suitable penalty
value is not a trivial task in GA. With the
addition of the route length constraint, the choice
of appropriate penalty constants becomes a
crucial factor. Limited experiments have shown
that imposing a large penalty value often results
in inferior solutions. The results again show that
vertex sequencing performs relatively well for
smaller problems, with the savings GA yielding
better results for larger problems.. The
performance of vertex sequencing becomes
worse with the additional route length
constraints.
feasible solution within reasonable computational
time for Problem 10 even though the number of
vehicles is increased. Note that the percentage
deviation from the best published results for
vertex sequencing varies from 0 to 25.3. On the
other hand, savings GA produces a better
percentage deviation on the whole, varying from
2.9 to 12.7. It is interesting to note that, on
average, 80 % of the improvements in the best
solution are obtained in less than 100 iterations
and the improvement obtained after this is only
marginal.

In addition, it fails to find any
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Table 4. Value of the parameters involved

: Population size Mutation rate Penalty constants
Problem Vertex seq Savings GA Vert Savings GA
number . gs ertex seq. avings o B
1 30 50 /N 10/N 1.0 -~
2 75 100 /N 10/N 1.0 -
3 100 150 10/N 20/N 1.0 -
4 100 200 10/N 20/N 1.0 -
5 100 200 10/N 20/N 1.0 -
6 50 100 1/N 10/N 1.0 1.0
7 75 100 1/N 10/N 1.0 100
8 100 150 10/N 20/N 1.0 1000
9 100 200 10/N 20/N 1.0 1000
10 100 200 10/N 20/N 1.0 1000
11 100 200 10/N 20/N 1.0 -
12 75 150 10/N 20/N 1.0 --
13 100 200 10/N 20/N 1.0 100.0
14 100 150 10/N 20/N 1.0 100.0
Table 5. Results for 14 benchmark problems
Best % Deviation
Prob. | Number of Vertex Savings GA XK* Published
Num. cities Sequencin Results” Vertex Vertex
q g
Seq. Seq.
1 50 524.61 565.31 524.61 524.61 0 7.7
Y 6 ) &)
2 75 850.92 894.43 835.26 835.26 1.9 7.0
(10) (10) (10) (10)
3 100 900.12 906.45 826.14 | 826.14 9.0 9.7
® (®) (® ® v
4 % 150 1200.1 1159.1 1028.42 102842 - 16.7 12.7
(12) (12) (12) 12
5 199 1552.6 1422.3 1310.97 1298.79 19.5 9.5
a7 (17 an (16)
6 50 561.45 601.32 555.43 555.43 1.2 8.3
(6) (6) (6 ©
7 75 1023.1 957.17 909.68 909.68 12.5 52
(12) (12) (11) (11)
8 100 951.02 939.83 865.94 865.94 9.8 8.5
®) 9 ® (€]
9 150 1456.7 1300.5 1171.33 1162.55 253 11.9
(16) 1s) (14) 4
: 10 199 -- 1575.4 1425.97 1397.94 - 12.7
- 19 (18 (18
11 120 1184.3 1110.3 1042.11 1042.11 13.7 6.5
M (M 0] 0]
12 100 955.54 876.42 819.56 819.56 16.9 6.9
10) (10) (10) (10)
13 120 1801.8 1586.6 1581.98 1541.14 16.9 3.0
(12) (11 (11) (1
14 100 888.91 907.90 866.37 866.37 2.6 - 4.8
an an an an
# Kelly and Xu (1999)
® Gendreau et al (1997)
¢ Number of vehicles
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CONCLUSION

We have investigated several ways of modelling
VRP using GA. Our results have shown that the
sequential algorithms, i.e. vertex sequencing and
savings GA, produce solutions that are superior
to the solutions obtained using the parallel
approach. The vertex sequencing method, which
has performed well for problems up to 50
customers, has demonstrated that GA is able to
produce very competitive results using a
relatively small population if the local search
heuristic employed in the improvement stage is
effective for the problems in hand. The savings
GA method, which exhibit smaller fitness
variance (Moin, 2002), has produced relatively
good solutions in larger problems. Although in
small problems, such as the S50-customers
problem, the vertex sequencing method
converges to better solutions, the power of
savings GA manifests itself in larger problems
where the local optimiser used in the vertex
sequencing method ceases to be effective.
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