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ABSTRACT  This study is about the propagation of waves through a short rod (or shug) of
viscoelastic material. The viscoelastic material are modelled as standard linear solids which involve three
waterial parameters and the motion is treated as one-dimensional. In this study, a viscoelastic slug is
placed between two semi-infinite elastic rods and a wave initiated in the first rod is transmitted through
the slug into the second rod. The objective is to relate the transmitted signal to the material parameters of
the slug. We solve the governing system of partial differential equations using Laplace transform. We
invert the Laplace transformed solution numerically to obtain the transmitted signal for several viscosity
time constants and ratios of acoustic impedances. In inverting the Laplace transformed equations, we used
the complex inversion formula because there is a branch cut and infinitely many poles within the
Bromwich contour. Finally, we discuss the relationship between the viscosity time constants, ratios of
acoustic impedances and the results of the interface velocity discontinuities.

ABSTRAK Kajian ini mengkaji pergerakan gelombang yang melalui satu batang bahan yang anjal-
likat dan pendek. Batang anjal-likat yang pendek tersebut dimodelkan melibatkan 3 bahan parameter dan
pergerakan gelombang di dalamnya dikira sebagai satu dimensi. Dalam kajian ini, batang pendek yang
anjal-likat tersebut ditempatkan di antara dua batang anjal yang mempunyai ukuran panjang yang tak
terhingga. Kemudian satu gelombang diterbitkan di dalam batang anjal yang pertama dan gelombang
tersebut bergerak dan menembusi batang anjal-likat yang pendek lalu terus menuju kepada batang anjal
vang kedua. Tujuan kajian ini adalah untuk mengkaji hubung kait di antara gelombang yang menembusi
batang anjal-likat dan parameter yang terdapat pada batang anjal-likat tersebut. Pada permulaannya kita
selesai satu sistemn persamaan separa dengan menggunakan penjelmaan Laplace. Kemudian kita
songsangkan persamaan jelmaan Laplace secara berangka untuk mendapatkan ukuran gelombang yang
menembusi batang anjal-likat tersebut bagi beberapa parameter kelikatan serta nisbah galangan akustik.
Untuk mendapatkan songsangan jelmaan Laplace, kita perlu menggunakan formula songsang kompleks
kerana terdapat satu *“potongan cabang’(branch cut) dan punca dengan jumlah tak terhingga di dalam
kontor Bromwich. Akhir sekali kita bincangkan hubung kait di antara parameter kelikatan, nisbah
galangan akustik dan hasilan dari pengiraan berangka bagi kelajuan gelombang yang terputus pada
permukaan.

(interface veloeity discontinuity, ratio of acoustic impedances, viscosity time constants, z-effective)

INTRODUCTION materials are said to exhibit both an
instantaneous elasticity effect and a creep

There are materials for which a suddenly
applied and maintained state of uniform stress
induces an instantaneous deformation followed
by a flow process which may or may not be
limited in magnitude as time grows [1]. These

characteristic. This behavior clearly cannot be
described by either elasticity or viscosity
theories alone as it combines features of each
and is called viscoelastic. Viscoelasticity is a
generalization of elasticity and viscosity. The
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ideal linear elastic element is the spring whilst
the ideal linear viscous element is the dashpot.
Energy is stored in springs as elastic strain
energy and energy is dissipated in a dashpot as
heat [2]. This paper deals with the transmission
of waves through a viscoelastic material which
is modeled by a small rod (slug) of the material
placed between two semi-infinite elastic rods.
The purpose of this paper is to determine the
properties of the viscoelastic slug after a wave
initiated in the first semi-infinite elastic rod is
transmitted through the viscoelastic slug into the
semi-infinite elastic rod.

There are three different types of vibration
which occur in thin rods or bars namely
longitudinal, torsional and lateral. In
longitudinal vibrations, elements of the rod
extend and contract whereas in torsional
vibrations, each transverse section of the rod
remains in its own plane and rotates about its
centre, the axis of the rod remaining
undisturbed. Lateral vibrations refer to the
flexure of portions of the rod, clements of the
central axis moving laterally during the motion
[3]. The velocities proportion of all these elastic
waves depend, amongst other factors, on the
" elastic constants and density of the solid, so that
the dynamic elastic constants can be determined
from the velocity of propagation {3]. When the
solid is not perfectly elastic then some of the
energy of the stress wave dissipate as it goes
through the medium, so the strength of the stress
wave attenuates as it travels through the
medium. In this paper, we consider each plane
cross-section of the rod to remain plane during
the motion and the stress over it to be uniforn,
so that the motion is longitudinal and one-
dimensional.

In this problem, we investigate the bahaviours
of the longitudinal waves after the waves
transmitted through a finite length viscoelastic
slug. We model the viscoelastic material as a
standard linear solid (Figure 1). We model the
system where a finite length viscoelastic slug is
placed between two semi-infinite elastic rods as
an idealization of the experimental work
described by H. Kolsky [4]. Many dynatical
system are so complex that analytical solutions
cannot be found and numerical solution is the
only answer. Here, we numerically compute the
waves transmitted through the slug into the

second semi-infinite elastic rod. Results are
obtained for several viscosity time constants and
several ratios of acoustic impedance.

MATHEMATICAL MODEL OF WAVE
PROPAGATION IN VISCOELASTIC
MATERIAL

In this problem, we investigate the dynamic
behaviours of a viscoelastic slug which is placed
between two semi-infinite elastic rods as shown
in Figure 2. A velocity discontinuity wave is
initiated in the first rod and propagates through
the viscoelastic slug moving into the second
semi-infinite elastic rod. There are multiple
reflections and transmission of waves in the
viscoelastic slug. When the waves arrive at the
interface between the first rod and the slug,
some of the waves are transmitted and some of
them are reflected. The same situation happens
when the waves reach the second interface
between the slug and the second rod, We first
obtain the governing equations and non-
dimensionalise them. Secondly, we state the
associated boundary conditions and non-
dimensionalised them. We then solve the
differential equations with prescribed boundary
conditions in the Laplace transform domain.

GOVERNING EQUATIONS

Let i be the additional displacement in the first

rod, and ¥V and W be the displacements in the
slug and in the rod following the wave
propagation respectively, where the notation =

indicates dimensional variables. Let &, be the

stress in the slug, &, and &, be the stress in
the first rod and in the second rod respectively,

E and E be young’s modulus in the slug and
in the rod respectively, © and o be the

density in the slug and in the rods respectively.
We choose the origin of coordinates at the

centre of the first interface and axis 0X along
the axis of the slug and we assume the wave

reaches the viscoelastic slug at time 7 =0.
When the wave, initiated in the first rod with
constant velocity discontinuity ¥, reaches the

slug at time 7 =0 and X =0, we can write the
position at time f of the cross-section of the
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first rod which was at location X attime f =0

as
- DA T (R 'S B
=¥ )= ~Hif ——+u(X,zt
x(X,f)—X+V{’ c) [ cJ HX.t)
for X <0 (1)
where H(#) is the Heaviside function and V' is
a constant. At time !, the cross-section of the
slug which at location X at time /=0 is
#(X,7) given by
FEXD)=X+¥(X,7) for 0sX<h,
(2}
where A, is the length of the slug, We write the
position at time 7 of the cross-section of the
second rod which at location X at time 7 =0
as
ANy =X+WX,[y for Xzh.
3
The stress in the body is denoted by &(X,7)
and at the cross-section X, the cross-sectional
area is A . We focus on a small section of length
SV in the body. Then considering the external
forces in this section [3],

_ 2.
[&+a—‘f§f}A—&A - pAa—_ziﬁX (4)
eX ot

a¢ &%

= =P (5)

ax o
Then the equation of motion [5] in the first rod
is

8¢, 8%
— = = el 6
v o ©
the equation of motion in the slug is
85, _ %
== p Ty )]
ox ot

fmd the equation of motion[5] in the second rod
is
as, o4
—.,‘ = T (8
x o )
We model the slug as standard linear solid so
that the constitutive equation in the slug is

. -85, & - 8%
G, + i TV=E{6“+—5"] 9

AN T

The stress-strain relations in the rods are

5, _E[KH[E—£]+6—?J, (10)
¢ c ox
3 o
Go=EZ 11
S (11

We now define the non-dimensional quantities
x, X, Lu,v,w,0,,0,,0,,t4,J] by the non-
dimensionalising scheme

- - h
X=hX, T=hx, =1,
c
vV
ﬁ:Khsh', ﬁ:—hsvg ﬁ;:zhjw‘
C ¢ ¢
5-H:EO-H’ &]_:Eo’\, O-'II'=E0-I|$
Gy A==u, p>i (12)
c c
where Cz=£! 52=£ . 2= and
P 2 pc
s
o=—.
[

If we now use (12) to non-dimensionalise
equations (1), {2) and (3), we obtain

x=X+%(1—X)H(I—X)+%u()(,t)
for X <0, (13)
x:X+Ka'v(X,t)
’ for 0L X <1,  (14)
x=X+-I§w(X,t) for X>1. (15)

We then non-dimensionalise (6)- (11), to obtain
the non-dimensional equations of motion and
stress-strain relations

o, =_V_& (16)

) G L

oo v olv

— =g, — \ 17

ax P27 o (17)

do,, ¥V dtw (18)

ax ¢ g’

. +a_—aa" ¥ ﬂ+a* oy
v T e T x|

(19)
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V{ ou
= —=-Hi-X)|, 20
o, c[ax ( )] {20)

Vo ow
=, 21
T c X @l

We take the Laplace transforms of the equations
{16)(21) with respect to ¢ and solve the
differential equations for the displacement

transforms #f ,V, W in the s domain. We obtain

X, s) = a(s)e™ (22)

WX, s)= b(a‘)cxp( —a:sX} + d(s) exp[ c_rsX ] s

B(s) B(s)
(23
WX, s) = fs)e™™ 24
where ﬁz (s)= lli?zf_zj .

In order to find a(s), b(s), d(syand f(s), we

apply the boundary conditions described as

follows:

(i) The particle velocity in the first rod is equal
to the velocity in the slug at the first
interface (X =0).

(ii) The stresses in the first rod and in the slug
at X =0 are equal.

(iii) The velocities in the slug and in the second
rod are equal at the second interface
(X =1)

{iv) The stresses in the slug and in the second
rod at X =1 are equal.

We obtain

i-X

2o
2ze“[e3‘” (Bis)+2)+ Bs)— z}

= —izsinh(xX) + o N
s e
sz[eﬂ(”(ﬁ(s) + z)2 Q(E(s) —z)z}

(25)

VX, s)
as a Bs) - z)ex gX
) 2{3”3[%(2 - X)J(ﬂ(s) + 2)+ (ﬂ(é) ) p[ﬁ{.s‘) ﬂ
o .
cxsz[eﬂ‘” (Bes) + 2 - (Bes) - 2)2]
(26)
423(5) exp{s( _a +1- X}}
St - _ B(s)
52 em(ﬁ(s)‘*’z)2 + (E(S)fz)z
(27)

In order to determine the response of the
system, we need to invert the Laplace
transforms of equations (25)+(27). To find the
inverse Laplace transform, we apply the
complex inversion formula [6] where
yric
Fy=— _[e“f(s)ds, t>0. (28
2@ Y
'Y—i'lXZ
If f(s) = L{F{)}. In practice, the integral in
(28) is evaluated by considering the centour
integral
L e” fs)ds
2
c
where C is the contour of Figure 3. if the arc
BDEFA is represented by T, it follows from

(28) that since T = RZ — 7 ,

=" iﬁﬁf’f(s)ds
R—o0 27 o
= lim L(j.e“f(s)ds L .[e‘“ J(s)ds
R0 2m 2 2 z
(29}

THE SIGNAL TRANSMITTED THROUGH
THE VISCOELASTIC SLUG

The focus of this paper is to obtain the solution
in the time domain of the displacement wave
propagation in the second semi-infinite elastic
rod by inverting the Laplace transform for the
solution (27). In order to do this we use the




inversion formula (29) to invert the

omplex .
iaplﬁce equation (27). Firstly, we apply the
Bromwich contour to lay-out the calculation of

the complex integrals along the contour and
determine  the  poles and branch points.
gecondly, we find all the roots i_n thp real and
complex plane until their contribution to the
golution is insignificant. In searching for the
roots, we have to ensure that we do not miss out
any root near the real axis since they may
contribute  significantly to  the results.
Furthermore, after determining the roots, we
caleulate the residues and we compute the
results for several values of viscosity time
constants and ratios of acoustic impedances.
The equation of the wave propagation in the
second rod after applying (28) to (27} is
w( X,

2 i 4zﬁ(s)exp[s{ﬁz‘) +1- XD
s

2w |
JI? i 2 e,f}(m-)(b_(s)Jrz)lJr(E(S)*Z)z

(30)

We consider a closed curve in the left half of the
complex plane and we note that there are branch

and

§=——

points of the integrand at
: apt

§= —L_ (see Figure 4), Then we make a cut
@i

—L_, and modify the
an

contour in order to avoid crossing the branch cut

as shown in Figure 4. We let ¥ be the closed

contour ABCDEFGHIKLMA and I" to be the
contour BCD, DE, EF, FG, GH, HJ, JX, KL,
LMA. In the closed contour , there are a

along —LV and
g,

second degree pole at s =0 and poles when the

denominator of the integrand (30) is equal to
zero. Then it follows from (30), on putting

T:VRZ —}’2 , that
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w(X,7)
y+iT

J-e'w W(X,s)ds
y—il

lim |

TR >

lim 1 ot~
= ——(il‘e‘ w{ X, s)ds
R— o |21
x

L Ie” WX, s)ds
2
r
= Z residues..inside..y — L ‘[e‘" WX, 5)ds
2m :

= Z residues..inside.. ¥ — j

NSNS PSS

Gl HI JK KL LMA

(31)

In finding the roots, we used Maple software
routine which required us to specify the vertices
of a rectangle within which a root is located. We
found 150 poles in the upper half plane and
consequently their complex conjugates. This
gave 300 poles in total which gives reasonably
accurate results,

The residue of the second order pole at s =0

4z7(s) exp[s[-)—g% +I-X+ JD

2a5
Pt (E(.S) + 2)2 + ([_i(s) - 2)2

—L{zz(i@—’EhZ—Xﬂ]

Iim
s—>0ds

2z 2
—a(-2)? aelf 7).
(32)
In calculating the other residues we use
li -
Residue— M (7 8n)N(s,) 33)

sos,  $2D(s)

57
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here N(s) = 425 (s) 2 1-X :],
where N(s) =4z8(s exp[s[ﬂ(s)—r + J

plely

D(s)= em(ﬁ(S)w“Z)z-F(ﬁ(s)fz)z and 5,

is the nth root.

RESULTS

Having found the required numbers of poles to
evaluate the displacement of the wave in the
second rod, we obtain the displacement in the
time domain

wiXN.1)
i E),, g, U 9 elioF)
M - 2z 2z
+ Z residuc.inside. g

(34)

In order to get the velocity, we differentiate (34)
and we run the program for several viscosity
time constants and ratios of acoustic
impedances. In non-dimensional time, it takes

. )
1] H time units for the first wave to reach the

)
second interface between the slug and the
second rod. Then a portion of the wave is
transmitted into the second rod and another
portion is reflected into the slug. The wave
which is reflected at X =1 will travel back to
the first interface atX =0. A portion of the
wave is the transmitted into the first rod and
another portion of the wave is reflected into the

. . . ’7 .
slug at non-dimensional time 2a f_— . This
7
reflected wave reaches the second interface at
unit time 3a \E . The wave keeps on bouncing
7l

back and forward in the viscoelastic slug which
creates multiple reflections and fransmissions at
both interfaces until they dies-out. In this
simulation we choose the ratio of acoustics
impedances, Z as small as z=10333 and
increase it wp to z=20 for viscosity

parameters ratio E_;=2 and for the viscosity
H

parameters ratio, =5, from z=0333 1o

==

,=30. In choosing the ratio of acoustics
impedances, we also take into account the
values of z for which the z effective [7],

z\g>l. Figures 53-10 show some of the
]

results for the particle velocity in the second rod
at the interface X =1 with several viscosity
time constants and ratios of acoustic
impedances z. This is the signal which
propagates in the second rod and can be
employed to determine the parameters of the
slug.

In all the results in Figures 5-10, the predicted

velogity discontinuities at X=1, t= JE— and
n

t=3 JE obtained by Musa [8] in viscoelastic
]

discontinuity analysis agree very well with the
results. The predicted velocity discontinuities
obtained using  viscoelastic discontinuity
analysis are shown in table 1. The results also
concur well with the results obtained using
perturbation techniques 9] by Musa {7] for
several viscosity time constants 7 and z# and

ratio of acoustic impedances, z .
DISCUSSION

For smaller viscosity time constants such as
7=02, 7=05 and 7=0.1, the initial
discontinuity is small and the velocity
subsequently ~ increases smoothly  and
asymptotically approaches 1. As the viscosity
time constants increase to & =1 with 77 = 2
and 7 =5, the initial discontinuity  is
significantly bigger and the velocity increases
linearly until the second wave arrives  at

t=3a é and the third wave arrives at

7

t=5a\/g. For 77 =20, 7 =50 and 7=10,
n

the initial jump is bigger still and the velocity
remains virtually constant until the arrival of the
second and subsequent jumps. The results also




—
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show that the first jump at X =1 increases as
the ratio of acoustic impedances, Z increases

until the z effective, z\/g=l. As the z
7

effective z \g approaches 1, the graph shows
]

no jumps after the first jump. Then the jumps
appear again for values of  z effective,

Z‘E > 1. This trend is also shown in Figure 11
i

for viscosity parametersy =20and 7 =10. At

the interface X =1 and t=a\/g , where the
n

first jump occurs, the red curve shows the jump
for z =0.333 is 0.6062 and as z increases to
z = 667, the discontinuity is 0.8558 and it is
shown by the green curve. Furthermore as we
increase Z,to z=0.9 the first discontinuity is
0.934 and as shown by the black curve and for
z=1.2, the first discontinuity is 0.9759 as
shown by the blue curve in Figure 11. As z

effective, z é approaches 1, as shown by the
7

yellow <curve when z=1.5, the first
discontinuity is 0.9816. As z goes beyond the
z effective, the value of the first discontinuity
decreases to 0.9536 for z=2.0 and is shown
by the brown curve in Figure 11. Figures 7 — 10
show that there are following jumps at z = 2.0

for viscosity ratio =~ =2 and at z=3.0 for the

= |3

viscosity ratio ---=35when the =z effective is

(=)

bigger than one. These figures also show that
the subsequent jumps for each ratio of viscosity
parameters are getting smaller as time increases.
However, Figures 5 and 6 show that the
discontinuities are so small that the velocity
graphs appear to be increasing smoothly to a
harizontal asymptote at v=1. Actually there
are jumps according to the viscoelastic
discontinuity analysis. Since the numerical
values are very small compared to the other
Jumps, they are not apparent in the results.

For bigger viscosity time constants which are
displayed in Figures 9 and 10, the velocity

curves remain constant in between two
discontinuity jumps. However when the
viscosity time constants are 77 =5, 7 =2 and

=1, the velocity curves show a linear

increase between two discontinuity jumps.
Furthermore Figures 5 and 6 show that the
velocity curves are increasing smoothly until the
curves settle down as the velocities approach
one.

This effect is also shown in Figures 12 and 13
where, as the viscosity time constants increase,
the velocity curves also increase with different
trends. In Figure 12 for z =0.333, the green
curve, which represents the velocity when the
viscosity time constants are 7 =0.5 and

4 =0.1, increases smoothly compared to the
velocity curves for viscosity time constants
7=5 and =1 and 7 =50 and F=10
which are represented by the blue and red
curves respectively. There is an increment in the

blue curve between = a\/;—_: and f = 3a\/g
7] n

or before the arrival of the second wave. These
increments continue to appear in the velocity
curve before the arrival of the next waves.
However, for the red curve the velocity is

constant between (= a\/g and f=3x \E or
i "

before the arrival of the second and subsequent
waves. The same trend of results also appears

for the ratio of acoustic impedance n:=2,
H

when z=12 in Figure 13. Since z=1.2 or

z effective (z* =z é] , z¥=10.849 is closed
7

to 1 for the ratio of viscosity time constants

??t =2, the following subsequent jumps are not

u

apparent here. This trend of result is also shown
in Figures 7 and 9 when z=15 or
z*=1.06. Another significant finding shown
by Figures 12 and 13 is that the jumps are
bigger for large viscosity time constants. Figure
12 shows that the first discontinuity is
0.37 (Blue curve) when the viscosity time
constants are 7 =5 and Z =1 and when the
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viscosily

time constants

are 7 =50 and
=10, the first discontinuity is 0.45 (blue
curve). Moreover Figure 13 shows the first

discontinuity is 0.85 (Blue curve) for viscosity
time constants 7 =2 and =1 and 098 (red

curve) when viscosity fime constants are

7 =20 and zz =10.

The discussion shows that the effective ratios of
acoustic impedance z* and the viscosity time
constants 77 and 7 play a very important role

in determining the behaviours of the wave
transmitted through the viscoelastic slug.

Table 1.  Predicted velocity discontinuities obtained using viscoelastic discontinuity analysis

z 7 | A | | IstPyp | 2ndPpp z |7 | B gt | istPyyp | 2ndPyp
0.333 | 02 0.1 .235 | 0.1053 0.00118 0.333 | 0.5 .1 0.149 | 0.0754 0.00116 .
0.667 0472 | 0.1487 (.000559 0.667 0.298 | 0.1183 0.000966
0.9 0.636 | 0.1623 0.000233 0.9 0402 [ 0.1368 0.000693
1.2 0.849 | 0.16%6 0.0000332 1.2 0.537 | 0.1520 0.000387
15 1.061 | 0.1706 0.00000431 2.5 1.118 | 0.1666 0.0000174
2.0 1.414 | 0.1657 0.000142 3.0 1.342 | 0.1636 0.0000973
0333 |2 1 0235 | 0.5171 0.139 0333 | 5 1 0149 | 0.3773 0.145
0.667 0.472 | 0.7299 0.0660 0.667 0.298 | 0.5919 0.121
0.9 0.636 | 0.7966 0.0276 0.9 0.402 | 0.6844 0.0868
1.2 0.849 | 0.8323 0.00392 1.2 0.537 | 0.7602 0.0483
1.5 1.061 | 0.8372 0.000509 2.5 1.118 [ 0.8336 0.00181
2.0 1.414 | 0.8133 0.0168 3.0 1.342 | 0.8184 0.0122
0.333 | 20 10 0.235 | 0.6062 0.224 (.333 | S0 10 (.149 | 0.4433 0.235
0.667 0.472 | 0.8558 0.106 0.667 0.298 | 0.6953 0.196
0.9 0.636 | 0.9340 0.0445 0.9 0.402 [ 0.8040 0.141
1.2 0.849 | 0.9759 0.00636 12 0.537 | 0.8930 0.0783
1.5 1.061 | 0.9816 0.000821 2.5 1.118 | 9.9792 0.00758
20 1.414 | 0.9536 0.0271 3.0 1.342 | 0.9614 0.0197

1stP,p is predicted velocity discontinuities at the interface X =1, for a = | and = ’% .
n

2ndP,y is predicted velocity discontinuities at the interface X =1,for ¢ =1 and £ =3 \/E .
]
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