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ABSTRACT  The maximum likelihood estimation (MLE) of parameters for the unreplicated linear
circular functional relationship model is discussed in detail. Explanations are given for the difficulty of
estimating parameters with no restrictions on the ratio of error concentration parameters. An
approximation technique is proposed for the case when the ratio of error concentration parameters is
known. The parameter estimates may be obtained iteratively since the closed-form expressions for the
maximum likelihood estimates are not available.

ABSTRAK Kaedah penganggaran kebolehjadian maksimum bagi menganggar parameter didalam
model hubungan fungsian membulat linear tanpa replika dibincangkan secara terperinci. Penerangan
diberikan tentang kesukaran untuk mendapatkan penganggar dimana tiada syarat dikenakan keatas nisbah
ralat ketumpatan parameter. Masalah ini boleh diatasi dengan menggunakan kaedah penghampiran
disebabkan bentuk tertutup bagi penganggar kebolehjadian maksimum tidak boleh diperolehi.

(maximum likelihood estimation, linear functional relationship model, circular variables, ratio of error
concentration parameters, linear circular functional relationship model.)

INTRODUCTION different methods, the anchored wave buoy and
HF radar system and shown in Figure 1. We
The problem of estimating the parameters of a would anticipate an ideal model y = x as
linear functional relationship model when both appropriate for the data. The scatter plot of one
variables are observed subject to error has direction measurement against the other
received a good deal of attention. It was shown " (measured in radians anticlockwise from North)
that the estimation in the linear functional gives a cluster of points along the X=Y diagonal
relationship model requires that we estimate the and then a few in the top left corner (1° against
fixed but unobservable true explanatory variables 359°, etc.). If we think of these data in the context
([1], [2]), most often treating them as nuisance of an ordinary linear regression model, we would
parameters. For maximum likelihood estimation regard those points at the top left as outliers, but
of unreplicated case, consistent estimators of all this is not so, because the measurements are on
the parameters in the model do not exit, since the the circle or circumference, not a straight line. '
number of parameters increases with increasing " Since 1° is only 2° from 359°, the point (1°, 359°)
sample size n (see Fuller [1]), which most often on the simple scatter plot should not really be far
leads to an unbounded likelihood function. from the ideal model y = x. In this respect, the
Lindley [2] resolved this difficulty by assuming simple scatter plot is misleading but it illustrates
that the ratio of the error variances is known; that the model which ignores the circularity of
particularly, that the error variances are equal. the data is equally misleading. Perhaps such
scatter plots should be drawn on a torus which
The linear circular functional relationship maintains the “wrapping” of the measurements
model refers to the case when both variables are scales. This shows the chief problem with
circular, subject to errors and the relationship ordinary linear regression or linear functional
itself is linear. What we mean by a circular relationship model when applied to circular
variable is one which takes values on the variables and below we will propose the linear
circumference of a circle, i.e. they are angles in circular functional relationship model which is
the range (0, 2x) radians or (0°, 360°). An more suited to this form of data.

example is wind direction data measured by two
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As an analogy to the linear functional 1

relationship model, we assume both _observations normal distribution. The term ~— describes the

for circular variables X and ¥, that is radar and . ) LK

anchored buoy in our example data set, are spread of the von Mises distribution in the same

g [ 2. .

observed with errors. We also assume that the way as " describes the spread of the normal

errors are independently distributed and follow distribution. As an analogy to the “ratio of error

the von Mises distribution with mean zero and variances” in the linear functional relationship
) -

concentration parameters x and v respectively in model, we will use the” term ;atlo t(:f error

which a circular random variable @ is said to have concentration parameters” to define the ratio

a von Mises distribution if its p.d.f is given by between the two concentration parameters in the
o linear circular functional relationship model.

806 10, ) = —— explc cos(B - )} |

27, (x) In the next section we propose the model for the 5

where Iy (K) is the modified Bessel function of the unrep[icated linear circular functional |

first kind and order zero. The parameter g, is the relationship and establish notation. Maximum |

mean direction while the parameter « is described likelihood estimation of the parameters is |
as the concentration parameter. discussed. We show that in the full maximum
likelihood formulation based on von Mises
As usual, our main interest is in estimating the distributions with unreplicated data, all the
intercept (a), slope (f) of a linear functional parameters are estimable if we know the ratio of
- relationship and the two concentration parameters the error concentration parameters. Note that, for
by using maximum likelihood methods. We use the linear functional relationship model, we also
the concentration parameter, x, to describe the need to assume knowledge the ratio of error
measure of dispersion for circular variable in a variances in maximum likelihood estimation, if

von Mises distribution, whereas we use the replicates are not available [2].

variance, o to describe the measure of
dispersion for continuous variables having a

©»
1
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Figure 1.  Scatter plot of wind direction data (in radians).

122




Malaysian Journal of Science 20: 121-126 (2001)

THE UNREPLICATED LINEAR
CIRCULAR FUNCTIONAL
RELATIONSHIP MODEL

Suppose x; and y; are observed values of the
circular variables X and Y respectively, thus 0 <
Xi, ¥; < 2m, for i =1, ..., n. For any fixed X;, we
assume that the observations x; and y; have been
measured with errors J; and g respectively and
thus the full model can be written as

x;=Xi+d;andy;=Y;+¢, where
Y;=a+ fX;(mod2z), fori=1,2,....,.n (1)

We also assumed J; and & are independently
distributed with (potentially different) von Mises
distributions, that is §~VM(0,x) and e~VM(0,v).
There are (n+4) parameters to be estimated, i.e.,
a,fxv and the incidental parameters X;...X,, by
maximum likelihood estimation. We also define

1 4
—_= /1, as a ratio of error concentration
K

parameters for the circular functional relationship
model. We seek an optimal value of S close to 1
since we expect, for example, the values given by
the two instruments to be numerically close and a
model with a high value of f does not have a
practical intuitive interpretation. We also restrict
the model to a neighbourhood of g = 1, though
we note that the likelihood for a finite set of
points may have a higher maximum at a large
value of S well away from the neighbourhood of
1. Clearly as the number of points increases this
potential global maximum will be for larger and
larger values of . But restricting attention to the
neighbourhood of 1 in the practical situation of a
finite number of points ensures that our estimate
taken from the local maximum will converge to
the true value, thus enabling us to use the familiar
results for approximate standard errors etc. In the
following section we highlight some problems in
maximum likelihood estimation (MLE) of model
(1) when no further assumption is made about the
error concentration parameters. '

MLE WITHOUT RESTRICTION ON THE
ERROR CONCENTRATION
PARAMETERS

When there is no restriction on the error
concentration parameters, ¥ and v, the log
likelihood function for model (1) is given by

123

L
Log L(a,Bxv, Xi... Xy X1 Xy Y1, o) =
-2nlog(27) — nlogly(x) — nlogly(v) + k Z cos(x; —

X))+ vIcosi- a- BX)

Differentiating logl with respect to parameters
a,B,x,v and X;, we can obtain &,B,k,7, and X,.
The first partial derivative of the log likelihood
function with respect to o is

TBL _ 5 sin(y, —a- )"

Setting this equal to zero and simplifying we get
> siny, —,Zi)h{,.)’cos& - ¥ cos(y, - ﬁ)?,.)sin& =0-

This gives,
= Z300.0)
2 cos(y, - X))
4 tant] 250 —/'ffri)}
2. cos(y, = AX,)

=tan™ {%}, say.

That is,
tan"(ﬁ), $>0,C>0
C
a= tan“(lg—)+7r, C<0
C.

tan"(%) +27, 8$<0,C>0 .

The first partial derivative with respect to X; is

Z08L _ csin(x, - X))+ vBsin(y, — = AX,)’

If we set this equal to zero, we may solve
iteratively for X; given some “initial guesses”.

Suppose %, is an initial estimate for ¥ . We
write  (as suggested by Mardia [3]),
X - /\71 =X = ’\A,m + X’i() - )?i = (% - ’\A,io)"'A;’ where
A=X,-X, and also we have

Hence the above equation  becomes,
sin(x; — X’i(l +4)) +¥Z?Sin(y,~ -a _B/?i() "VBA:) =0.
'y

For small A;, we have
cos A;= 1, cos A 1, sinA;~ Ai and sinfA;~ BA;
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Hence the equation is simplified (approximately)
to

sin(x; ~ /\A,io)‘*' KABS'."(Y,' ~-a- A’{,io)

COS(X;— .())+ ﬂ COS(y -a- ﬁXm)
2

where Xn is an improvement of X

The first partial derivative with respect to g is

alogL-ZX sin(y, —a - gX;)"

f may also be obtained iteratively. Suppose ,230

is an initial estimate of 3. Then

_&_k)’ef:(yi_&_ﬁ())?i)*-“f’ where
A= /}0 - /é For small A, setting the partial
derivative to zero gives

X sin(y, -a-8,%) , 3
ﬂ ﬁ(} z ﬂ" ( )

ZX icos(y, —a—pB,X;)
where ﬁl is an improvement of ,80.

The first partial derivative with respect to xis

o Eee =)

This give
~ ](; P I.(%
Zcos(x’_X")znlozgznlli ;

where the function 4 is ratio of the modified
Bessel function for the first kind of order one and
the first kind of order zero. Thus

A(x) = %Zcos(x, -X)-

=nd(k)°

Hence

= ( > cos(x; - X))'

The estimate of X can be obtained by using
various simple approximations for 4™ (w) given

by Dobson [4]. For example, for w near 1, the
approximation is

9-8w+3w

A==

Finally, the first partial derivative with respect to

Vis ﬁl;‘g’L = 3 cos(y; —a fX,) - nA(v)? and hence

V= A"(%Zcos(y,. —-&—ﬁf’,))'

estimated by the above approximations.

V may also be

Possible initial estimates for iteration are
Xy=x, in(2)for i=1, ..,n and 3 =10 in
(3). This is sensible since both the X and Y are
estimates of the same quantity (i.e. direction), so

1.0 would be a logical initial guess of 8, and Xx;
is a direct measurement of X,. By using (2) and

(3) we can update o, 8.X,x and v, and proceed
iteratively. This iteration procedure will continue
until the convergence criterion is satisfied.

However, there is a problem with above iteration
procedure. The calculation of ,\A’“ in (2) to
estimate X, that is

Xy :/‘A"n +

i

. o Ve A s
sm(x, —Xi0)+?ﬁ81n(yi _a_ﬂXm) ’

T T
COS(X, - Xio)'*';ﬂz cos(yl -a _ﬁXm)
depends on the values of ¥ and & , where

V= A"(%Zcos(y, —&—,b/\}i))

and

K= A"(%Zcos(x, —)?i)) :

We found that in our iteration the value of
w=lZcos(y,. —&—/A?)A(,.) or lZcos(x, -X)
n n

is equal, or very close, to 1.0. This has been
verified experimentally by using small simulated
data sets as well as the wind direction data. For
this reason, 'V and K will be very large and
tend to infinity, since the approximation function

of A7'(w) is given by
98w+ 3w
Ay = 228w
==

which® shows that 4-!(w) will tend to infinity
when w approaches 1.0.

Further, for large ¥ and & we are not be able to
compute [ () and I,(<) in the log likelihood
function, since ,() is given by

N v v
IL,(v)= 1+2—2+“—2242 +——224262 + ... 4

and a similar definition holds for J, (£). Bowman
[5] suggests that these series rarely require more
than 25 terms, but it is clear that (4), as well as
the log likelihood function will tend to infinity,
for large value of ¥ and «.

It is shown in the next section that this instability
problem to estimate the parameters numerically,
may be overcome by fixing the ratio of the error
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concentration parameters, i.e. assuming it is
known. Note that estimation of parameters in the
unreplicated linear functional relationship model
required us to know the ratio of error variances,
and without this additional constraint, the
likelihood function is unbounded, that is
theoretically the parameters are not estimable [1],

(2].

MLE ASSUMING THE RATIO OF ERROR
CONCENTRATION PARAMETERS IS
KNOWN

Suppose we assume that the ratio of the error

concentration parameters, that is Y _ 7 is
K
known. Then the log likelihood function is given
by
LOgL(afﬂ)KXb"')Xl;ﬂ';xh o XmYi ~--:yn) =
-2nlog(27) — nlogly(i) — nlogly(Ax)
+x Z cos(x; — Xj) + Ak Z cos(y, - a - BX])

Differentiating logL with respect to o, x and X;
we obtain the likelihood equations for the
parameters, which may be solved iteratively. The
estimates &, /} and ,{’i are similar to the estimates

given above. The equation for & may be solved
numerically based on the asymptotic properties
of the Bessel function,

By setting JdlogL _ = we get the equation
y g gL g q
%3

Alr) + A4(x) =%{Z:cos(xi —)A(i)+12cos(y,. —-a-f%)
(5)

In the following sections we will consider two
cases, first when the ratio of error concentration
parameters is equal to one and the case when the
ratio is not equal to one.

(a) The case when A =1,
When A =1, equation (5) reduces to

Alx) = ;—n{ZCOS(x,. —X’J%—Zcos(yi —zi—ﬁAA’,) (6)

The approximation given by Dobson [4]

9-8w+3w’ | (7
8(1-w)

to estimate x in (5) can only be used for this

case. Hence, (6) can be solved by using (7) to

estimate X when the ratio of error concentration

parameters is equal to one.

A7 (w) =

125

(b) The case when A+1.
In this section we use the asymptotic properties
of the Bgssel function so that we can find an
estimate of x for any value of A. From the
asymptotic power series for the Bessel functions
Iy(r) and I,(r), (see Abramowitz & Stegun [6]) we
have,

A(r)zll(r)=l S B 4

1,(r)

¥

T
Simplifying equation (5) using (8) we have the
expression approximately given by

8(1+ 4 - o)’ — 8k —(1+%)x—(1+%2) =00 O
where ¢ =l{zws(-xi —/\A',)-FI.ZCA)S()’,- —&_ﬁ’{,l)} ’
n

It can be shown (see Rade & Westergren [7]) that
the above cubic equation in x , equation (9), has
only one positive real root and two complex

roots, giving K as the positive real root. In this
study we solved equation (9) by using a
FORTRAN subroutine,

In the above cases, the asymptotic estimate
standard deviation of the estimated parameters
can be obtained from the inverse of the estimated
Fisher information matrix.

NUMERICAL EXAMPLE

The wind direction data (shown in Figure 1) will
be use to illustrate the above model. Table 1

below gives a comparison of X and its standard
etror obtained by Methed 1 (approximation
given by Debson [4], i.e. equations (6) and (7))
and Method 2 (asymptotic power series for

.Bessel function, i.e. the solution of K from

equation (9)), in which we assumed the ratio of
error -concentration parameters is equal to one.
From Table 1, we can see that both methods give
almost similar estimates of x and its standard
error at three decimal places. :

Table 2 gives the estimates of parameters
a, B and x obtained by using various values of

the ratio of parameter concentrations, A . These
show that by using the asymptotic power series

for Bessel function, i.e. the solution of & from
equation (9), we can obtained the estimate of
parameters for any value of error concentration
parameters.
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Table 1. Comparison of estimating K and its standard error by two different methods.

Method 1 Method 2
P 22.9842 22.9839
s.e. (’2‘ ) 2.0014 2.0020
Table 2. Estimate of parameters for various value of 4.
A | & (sd.of Q) B sd.of §) K (s.d.of K)
0.5 10,1337 (4.8466x10 %) | 0.9827 (1.1939x10 %) | 37-0550(3.2301)
L0 101270 5.0392x10 %) | 0.9881 (1.2417x10 %) | 229839 (2.0020)
15 10,1140 (5.0267x10 %) | 0.9891 (1.2235x10 %) | 19-8573(1.7303)
20 | 0.1212 4.9391x1072) | 0.9867 (1.2000x10 %) | 184175 (1.6054)
CONCLUSION distribution all the parameters are estimable if we

In this paper we present a linear circular
functional relationship model, which is a
statistical method for fitting a straight-line
relationship when both circular variables are
subject to errors. The model that we proposed is
analogous to the linear functional relationship
model for continuous variables, the so called
errors-in-variables model, which has been
discussed by many authors. In this model we
assumed the circular random errors had von
Mises distributions. The maximum likelihood
estimates have been obtain numerically by an
iterative method, not analytically. However the
iterative method fails to give estimates of
parameters because of an instability problem in
estimation of K and v, and we found that this
instability problem can be overcome by assuming
the ratio of concentration parameters, i.e.,

A=Y is known. The approximation of
K
asymptotic power series for Bessel function have

been proposed to obtained these estimates.

We give estimates of the parameters for various
values of A (Table 2), showing that in the full
maximum likelihood formulation of the
unreplicated linear circular functional
relationship model based on a von Mises

know the ratio of the error concentration
parameters. This is a similar condition to that
which holds for the unreplicated linear functional
relationship model, in which we have to know the
ratio of error variances.
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