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ABSTRACT In this paper, we study the relationship between the Fisher index of discrimination of a
univariate test statistic and the minimum sample size corresponding to the values of the parameters under
testing, which is required to achieve predetermined probabilities of the Type I and Type II errors. We
present a numerical study of the Fisher indices of discrimination of a gamma statistic and a Poisson
statistic used to discriminate between the variances of a normal distribution. For fixed probabilities of the
Type I and Type II errors, we show that the Fisher indices of these two statistics converge to some
constant value associated with the Fisher index of a certain normal statistic, as the minimum sample size
required to separate the two hypotheses goes to infinity, that is, when the two variances under testing
become identical. To discriminate between two given variances of a normal distribution, approximate
formulae for determining the minimum sample size required to achieve predetermined probabilities of the
Type I and Type II errors are derived.

ABSTRAK Dalam kertas ini, kami mengkaji hubungan di antara indeks pembezalayan Fisher bagi satu
statistik ujian univariat dan saiz sampel minimum bersepadan dengan nilai-nilai parameter di bawah
pengujian yang diperlukan untuk mencapai kebarangkalian ralat Jenis T dan II yang ditentukan terlebih
dahulu. Kami persembahkan satu pengajian berangka bagi indeks-indeks pembezalayan Fisher statistik
gamma dan statistik Poisson yang digunakan untuk membezalayan varians-varians taburan normal. Bagi
kebarangkalian ralat Jenis T dan II yang tetap, kami tunjukkan bahawa indeks Fisher dua statistik ini
menumpu kepada sesuatu nilai pemalar yang bersekutu dengan indeks Fisher bagi sesuatu statistik
normal, bila saiz sampel minimum yang diperlukan untuk memisahkan dua hipotesis berkenaan menuju
ke infiniti iaitu, bila dua varians di bawah pengujian menjadi secaman. Bagi membezalayan dua varians
taburan normal yang diberi, rumusan hampiran diterbitkan untuk menentukan saiz sampel minimum yang
diperlukan untuk mencapai kebarangkalian pratentu ralat Jenis I dan II. '

(Fisher index of discrimination, minimum sample size, variance$ of normal distribution, predetermined

Type I and I errors)
INTRODUCTION separation of the two hypotheses. In this paper,
we study the relationship between the Fisher
The Fisher index of discrimination has been index of discrimination of a univariate test
successfully used in statistical pattern recognition statistic and the minimum sample size
to measure the separation provided by the corresponding to the values of the parameters
discriminant function which has the normal or under testing, which is required to achieve
near-normal distributions under the two different predetermined probabilities of the Type I and

hypotheses  (Fukunaga, 1972). In  certain Type II errors.
composite  hypothesis  testing problems

concerning the parameters of a random vector X, Consider the problem of discriminating between
it is required to transform X by a linear two probability density functions (p.d.f.)
transformation A so that AX is ancillary (Rao, belonging to the same parametric class. In testing
1973). In this case the matrix A is chosen so that Hp: = (x| 6,) versus H: f = f(x|92 ) using a test

the Fisher index of AX provides the maximum
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statistic 7, the Fisher index of discrimination of
T, denoted by @y, is defined as:

2Eg (T) - Eg, (DY

= - m
=y D+ Ve, D

To illustrate this concept, consider testing Ho: X ~
X~ N( /12,0'2) where
X-m ,
oldn

where X is the mean of the random sample of
size n. Then T ~ N(0,1) under Ho and T ~
N(Jn(uy - )/ 0> 1) under H;. The Fisher index

N( yl,crz) versus Hy

Iy < Hys using the test statistic T =

of T'is given by
¢ =l "#2)/0']2 . (2)
This index is a linear function of n. For a fixed

prdbability of Type 1 error @, ¢T increases with
the increase in sample size 1, corresponding with
the decrease in the probability of Type II error f5.
There is a minimum sample size  Fmin
corresponding to 2 fixed B such that the
probability of Type 11 error will be smaller than p
for any sample size larger than Am,. We are
interested in the behaviour of the function

Gr(Pyin) = Penin L1 '#2)/0']2 . (3
This paper studies ¢ (n,,) and

test statistics 7 and Y used in
between the variances of a normal

By () fOT TWO
discriminating
distribution.

1. Some Properties of the Fisher Index of
Discrimination

First, we present the result that the Fisher index
(3) of a normal statistic is constant, depending
only on the probabilities of the Type I and II
errors ¢ and 3 due to Tan and Yap (2002) subject
to a certain condition.

Proposition 1. Suppose the test statistic 7' is
normally distributed under H, and H,, with
distributions N(vl,oz) and N(vz,crz) respectively,
where the critical region of the test is of the form
H, is rejected if and only if T < ¢ for some
constant ¢. If @ and S are the probabilities of the
Type I and 11 errors respectively, Z« and zp are the
left-tail and right-tail percentage points of the
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standard normal distribution respectively defined
by

’ a= [" —\/—%_—e-_z_ du (4)
® 27
1 - 5
—‘/5—_; e du (

p-,

then ¢T =(Zp “Za)2-

Proof. From the definition of @, a=P(T S ¢ | Ho)
= P(Z < (c-w)/ol Ho) where Z ~ N(0,1).
Therefore .

(c-w)/o=24.

(6
Similarly, =P(Z> (¢ —V2 )/ o| H;) implies that

M

(c—vy)o=2p
From (6) and (7), ¢, =[(v, —v)loP =(zp-2a)"

Corollary 1. In testing Ho: X ~ N( gy, 0%) versus
H;: X ~ N( 4,07, the minimum sample Size Amin
achieving a fixed probability of Type 1 error o

and probabilities of Type 11 error smaller than S
is the smallest integer satisfying

noin 2 lozp—z) =) ®

Furthermore the Fisher index (3) of the test
statistic 7 is the constant (z ﬂ—zn)z provided

[a(zﬂ —z,) (44 —,uz)]2 is an integer.

In testing Ho: X ~ N( 50,7
versus Hy: X ~ N(y,,0,7 ), where o, <o, letT

Proposition 2.

= i( X, ~%) o be the test statistic, where X1,
i=l

X, .., Xyisa random sample of size n from the

distribution, with sample mean X. Then T ~

gamma( (n—-1)/2 2) under Ho and T ~ gamma
((n-1)/2,205" /,%) under H, with
o
-2k
¢r =(n-1) [ 01 ] .
1+(=2)*
(61)
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Proof.  Under Hy, T ~ yXn-1) or
gamma((n-1)/2,2) and U = i(X,—7)2/022~
x*(n-1) under H,. Since T = é;;lrz /62U, T
~gamma((n—1)/2,20,%/c,?) under H,.

Noting that if 7 ~ gamma (a.p), then E(T) = ap
and M(T) = a %, we obtain

= 2{(" ~ 1)[1 ~ (%)2]}2
e 2]
%2y2]2
[1-2y]

= (n—l) ! .
[i+2]

Proposition 3. In testing Hy: X ~ N( yl,alz)
versus Hy: X ~ N(,uz,azz), where 022 <o'12,

let T = i(X;-Y)Z/UIZ be the test statistic,
i=l

where X}, X,, ..., X, is a random sample of size

n from the distribution, with sample mean X.

Furthermore, let H, be rejected if and only if 7<

¢ for some constant ¢; @ and f are the

probabilities of the Type I and I errors’

respectively. Then, if 7 is an odd positive integer,
we have & =P[Y,; > (n=1)/2]and 1-8 =P[ T,
2(n-1)/2] where ¥, ~ Poisson (my), Y, ~
Poisson (m;) with my= ¢/2 and my; =

col/ 20,7 . Furthermore

By = 2m=m)” (10)
m+m,

Proof. From Proposition 2 and utilizing the fact
that if 7 is gamma (a, b), where g is an integer,
then P(7 < ¢) = P(Y 2 a) where ¥ ~ Poisson
(c/b) (see for example Casella and Berger
(1990), pg.101), we obtain o = Pl <c| T~
gamma((n—-1)/2,2))=P(¥; 2 (n—-1)/2) where
Yy ~ Poisson (c/2), 1-8 = PT < c| T~
gamma((s-1)/2,20,° /)% )= P(Y, 2(n-1)/2)

where ¥, ~ Poisson (co,2/20,°%).
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Corollary 2. The Fisher index &, given by (9)

is equivalent to

— )2
o =(n_1)_(w an

2 b
(m* +m,")

where m, and m, are parameters of the Poisson
distribution defined in Proposition 3, namely

mz/m1=0'l2 /0'22. (12)

Corollary 3. For two size- tests with odd
sample sizes n and n’,

By (7')> @y (n) forn’ > n, (13)

Remarks. Let m; = ¢/2 and m, =co,? /20,?
be the Poisson parameters corresponding to the
test with size » and let m,” = ¢'/2 and my =

c'0,* /26, be the Poisson  parameters

corresponding to the test with size n’. Define

r'=(n'-1)/2 and r=n-1/2 with ' > p

Since ie‘”"m,"/k! < ie"”'m,"/k! = a and
k=r' k=r

gu(m)= ie""’m‘f /k is monotonic increasing in
k=r

0 ' . .

M, Q=% ™M (my)* 1kt With m)” > my, ie. ¢’ > c.
k=r'

From (10),

(-]

Gym= %2~ (14)

0'12
1+—2 . i
)

It is clear that ¢, (n’)> @y (n) for ¢’ > ¢,

Let a and £ denote the probabilities of the Typel
and II errors respectively. Given a fixed pair (a,
B), we look at the sequence of tests with
parameters my(r) and my(r) of the Poisson
distribution satisfying

a=>YeMmk /1, (15)
k=r
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1-g= S e™m," K, (16)
k=r

where =(n—1)/2 and n is the odd sample size
of the test. We show that the behaviour of the
sequence {m,(r)/my(r)} as a function of  is
crucial in determining the minimum sample size
required to achieve predetermined probabilities
of the Type I and II errors.

Theorem 1. Consider the hypothesis testing
problem of Ho: X ~ N( ;11,0'12) versus Hy: X~
N( ,,0,%), where 0'22 < crl2 using the test

statistic 7= i( X, -X)lo} and a critical region
i=l

of the form T < ¢ for some constant c. If the

sequence {m2 )/ ml(r)} is monotonic decreasing

in r for r > 1, where m(r) and my(r) are defined
by (15) and (16) respectively, then the minimum
odd sample size ny, of the tests with probability
of the Type I error & and probabilities of Type 1l
error not exceeding B is given by Fmin = 2r'+1
where r is the smallest integer satisfying

my () m (") S 0'12 /0'22.

Proof.  Given {m,(r)/ m,(r)} is monotonic
decreasing in r for 2 1, let 7" =(ny;, —1)/2 be
the smallest integer satisfying m,(r")/m (") <

o2 1oy, where @ =3 eme ()" /it 20
k=r*
1-8 =ie""=""(m2 YR For any size-«a test

k=r -7
with odd sample size 7’ > P let

(’=[(n’—1)/2] >+ and m; = m(r") be the

Poisson parameter satisfying a

=ie—m.(r‘)(m‘ (r‘))k k! = Ze""ll (mll)k Ik Then
k=r'

k=r"

* . .

my > m() since gp(M)=3emmt [k 1S
k=r'

increasing in m for a fixed . Furthermore the

probability of Type II error B’ of the test with

sample size n* satisfies 1= "= 3¢ (m))* 1kt
k=r'

where my’ = my’(0,2 / o,”). Suppose my’ = ma(r’)

is the Poisson parameter satisfying 1-8
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= ie_mz' my Y R Then 1-8 < 1-p' since
k=r
g, tm)= i o~"mk /0 I8 increasing in m for a fixed
k=r'
and my’< my’ due to mzl Im =
my (') my (') < my(r*y/m(r"y. In other words
B < B. Similarly for an odd sample size n" <
Aimin, the probability of Type Herror B" > Bbya
similar argument. :

t]

¥

Theorem 2. Let (e, f) be fixed probabilities and
my(r), my(r) are the values defined by (15) and
(16) respectively. Consider testing Hot X ~

N( ,ul,olz) versus Hy: X ~ N(uz,czz ), where
0'22 < 012 using the statistic T =

S, =T o and a critical region of the form
i=l

T < ¢ for some constant ¢. Let Y(m(r )) and
Yo(my(r )) be the Poisson statistics associated
with T defined by:

a=P62[TSc]=P[Y12r], an
1
1-=P _,[Tsc] =PV 2] (18)
Then
1
@) m(r) ~ r+z,r? forlarger (19)
and -
1 .
Y my(r) ~ r+zpr? forlarger, (20)

where z,, and zp are constants defined byv (4) and
(5) respectively,

-- A () =my )P Ly
(M ="y~ G 7
as r—>o, 21

(ii) o Im@)=m@ (7, -z,)?
O = T
as r—> o, (22)

where @y (r)and @y (r)are the Fisher indices of
the statistics ¥ and T respectively.




e
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Proof. (i) If ¥ has the Poisson distribution with

parameter m, then (Y -m)/ m converges in
distribution to N(0, 1) as m — o . Since

PLt-m) m 2 -m)im, 1 = @,
lim (r—m))/ Jm, = -z,. (23)

my—wo

We note that m;(*) > as r— . Hence

1
my(r) ~ r+z,r? forlarge r.

By a similar argument,

lim (r —mz)/,/m2

hy o

=-z5. (24

Since my(r) > as r— o, we have m,(r)
1
~r+zgr? forlarge r.

(ii) From (19) and (20), gy (r)~_ 25 ~2a)’r

1
[2r+(z, +25)r2]
for large r and hence ¢,(r) > (z5-2,) as
r—o o,

(iii) Similarly, from (19) and (20), or (r)~

2Azp—z,)'r? for large » and

B
[2¢2 +2(z, )2 4 (z, +250)r]

hence ¢y () — (zg —z,,,)2 as r —> o,

Remarks. (i) It is clear from Theorem 1 that
for fixed (e, B), if the sequence {m,(r)/ m,(r)

is monotonic decreasing in r for > 1, then each
r=(ny, —1)/2 where ny;, is the minimum odd
sample size of the tests of Ho: X ~ N( yl,alz)
versus H;: X ~ N(,uz,azz), where 0'22 <0'12,

[my(r)/ my(r)] = 0, /0, with probability of
the Type I error & and probabilities of Type II
error not exceeding f.

(i) The constant (z4 - z,)? is the Fisher index

of a certain normal statistic 7' defined by (3) and
because there always exist constants y,, 4,0 >0

such that [o(z -z, ) Ay, - py)]is an integer, we
can apply Corollary 1.
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In Theorem 1, the minimum test sample size is
obtained by studying the ratios of the Poisson
parameters {m,(r)/m,(r)}. An analogous result
can be obtained by studying the ratios of the
percentage points of the chi-square distribution
X’(n), ie. {u,(n)/u(m)} to be defined in the
sequel. Consider the tests on variances stated in
Propositions 2 and 3 using the test statistic T =

i(Xi -X)? /gl? - Noting that gamma (v /2, 2)
iiszlthe distribution y*(v), we obtain

a=PT < c| T~x%(n-1)), (25)
1-B=P(T < ¢| T~ gamma

((n-1/2,20,% 15,%))

=P(I'sc(0) 10,)) | T~ 1)) (26)

where H is rejected for T<c and ,? > 5,2,

For fixed probabilities o and B, we define the
sequences u;(n) and u,(n) as follows:

a=P(T < uy(n) | T~ xX(n)) 27
1-B=P(T < uy(n) | T~ x*(n)) (28)

where
uz'(n)/u, (m=0,’10,". (29)

Using a similar proof as that of Theorem 1, we
can prove the following result.

Theorem 3: Consider the hypothesis testing
problem Hp: X ~ N( ,u,,o-,z) versus Hy: X ~

N(4,,0,%), where o,” <o, using the test

statistic 7= i( X,-X)? /o2 and acritical region
i=l
of the form T < ¢ for some constant c. If the
sequence {u,(n)/u,(n)} is monotonic decreasing
in n for n 2 1, where u,(n) and u,(n) are defined
by (27) and (28) respectively, then the minimum
sample size ny, of the tests with probability of
the Type I error a and probabilities of Type II
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error not exceeding 3 is the smallest integer Zimin

satisfying 1, (i =D/t (e =1 S 017 /02"

Corollary 4. Consider the test on variances
given in Theorem 1 where {my(r) my (r)} 18
monotonic decreasing in r for r 2 1, m,(r) and
m, (r) are defined by (15) and (16) respectively.
By continuity, consider the extension of the
function h(r)= mz(r) /ml(r) to

h(r+1/2) = mz(r+1/2)/ml(r+1/2)
=u,(2r +1)/u,2r+1) ’

for integers r = 1, where u (2r+1) and, u,(2r+1)
are defined by (27) and (28) respectively. Then
the minimum even sample Size Fmin of the tests
with probability of Type I error o and
probabilities of Type 1I error not exceeding f is
given by i, = 2¢" +2 where r' is the smallest
integer satisfying

my (" +1/2)/m (' +1/2)<0 o,

2. Numerical Results and Approximate
Formulae

For fixed (a, B), our numerical study indicates
that the sequence {k(r)} for r = 1 is monotonic
decreasing in r where &(r) = my (1) my(r) and
my(r) and ma(r) are defined by (15) and (16)
respectively. Table 1 lists down the values of
my(r), my(r), k), ¢ () and @, (v) for selected
values of » with (a, f) fixed at (0.05, 0.1). The
Fisher indices ¢r(r)and ¢y (r)are defined by
(22) and (21) respectively. Since K@y =
0'12 /0'22 by (12) and the sequence {k(r)} is
monotonic decreasing in 7, this is consistent with
the expectation that a smaller ratio of 0'12 / 0'22
would require a larger 7 corresponding to a larger
minimum sample size Amin 10 discriminate
between the hypotheses Ho: X ~ N( yl,alz) and

Hp: X ~ N( ,u2,022 ), where 0'22 <012. From
Table 1, we observe that the Fisher indices
¢r(r)and ¢y () approach 8.6 which is close to

the limit (z5 - z‘,)2 , namely 8.5644, as r goes to

infinity. The functions ¢r(r)and @y (r)are

displayed in Figure 1. Given (a, ), suppose that
we wish to determine the minimum odd sample

size Ngin Of the tests of Hp X ~ N( ;t,,o‘lz)

versus AH1: X ~ N( ;12,022 ), where 022 < 0'12 R
with probability of the Type 1 error @ and

probabilities of Type II error not exceeding /.
This is equivalent to given a certain value of &(r)

= crl2 / 0'22 , we are required to find the value of

r corresponding to this k(r) and then Apin = 2r +1
if » is an integer. We shall discuss two
approximate formulae for finding the value of r
corresponding to (7).

From (19) and (20), we can assume the
approximation: :

k(r)= mz(")/ml(")

1 1
=(rA+ZﬁrA.2-)/(rA+ZarAE). (30)
Solving (30) for 4, we obtain

ry=lzp —kea) =DF - (1)
The approximation (30) is more accurate for

larger values of r or smaller values of k(r) (close
to 1).

We consider another approximation
k()= my(r)/ m(r)=

1 1
(re +zprc? +gp)re + 24702 +6q) (32)

where the constants &, and ¢, depend only on
« and Srespectively. Solving the equation

(o= +(hzg — 21T + (ke =6) =0 (33)

for r¢, we obtain

2
re =[[(z sk, Y y(zp — k) — 40k = Dlksy =5 )}/ 20k = 1)]
(34)

Define r;, as the smallest integer larger than or

equal to #,and r(; as the smallest integer larger

than or equal to 7 .

For given values of k() in Table 1 from
4.07142857 to 1.029758661, the estimated values
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of r by r,', from (31) and r(; from (34) are given
in Table 2, together with the absolute and
percentage errors in estimating », where a = 0.05
and £ = 0.1. We note that to use the formula (34),

we need to estimate the constants ¢, and ¢,
from known values of r, m(¥) and my(r). The

actual values of ¢, (r) = m()-r- zar%and
1
S5(r) = my(r)—r—-z,r? depend on r. In this

example, the actual values ¢, (r) and ¢ B (r) are
calculated for » = 100, 200, 300, 400, 500, 600,
700, 800, 900, 1000. The constants ¢, and ¢ 8
used in (34) are the averages of the 10 calculated
values of ¢, (r) and ¢4(r) respectively. These

are namely ¢, =0.375 and ¢4 =0.074.

We observe that the absolute error in estimating

percentage errors in estimating np;, namely
|""‘f‘1 | x100 and lr—rélxwo are roughly the same
(r+d) - r+3

as the percentage errors in estimating r. From
Table 2, we observe that the absolute error in

estimating » by r,; varies from 2 to 7 with the

corresponding percentage errors varying from
40% to 0.5%. The percentage error is smaller for
smaller values of k close to 1 corresponding to
larger values of r. On the other hand, the absolute

error in estimating r with 7, varies from 0 to 2

with the corresponding percentage errors varying
from 20% to 0%. We conclude that the estimator

7. is better than 7, . However, the estimator 7,

is easier to use compared with 7. because to use
¥.., we need to estimate the constants ¢, and

¢ from calculated values of ¢, (r) and ¢4 (r)
for a set of values r. :

the minimum odd sample size ny;, by (31) or (34)
is double the absolute error in estimating ». The

Table 1. Values of m(r), my(r), k(r), ¢T (l‘) and ¢y (7) for selected values of r with (a, f) fixed at (0.05, 0.1).

|

]

|

|

p =01 p =01 |

T 0.05 1- =09 r 0.05 ) 1- =09 ‘

my m; k=m,/m, or o m ‘ m; k=my/m; o ér

5 1.96 7.98 4.07142857 | 5.36719884 7.29183099 500 463.59 528.74 1.140533661 | 8.583781177 | 8.554659236
10 541 14.19 | 2.62292052 | 6.68519609 7.86616327 600 560.06 631.46 1.127486341 | 8.587135419 | 8.557069961
15 9.22 20,11 | 2,18112798 | 7.26933792 8.08674395 700 656.81 733.96 | 1.117461671 | 8.589836316 | 8.559463463
20 13.23 25,88 195616024 | 7.57675745 8.18320123 800 753.79 836.29 1.109446928 | 8.591171508 | 8.560890018
25 17.35 31.56 1.81902017 | 7.78393857 8.25696586 900 ‘850,95 938.48 1.102861508 | 8.593083729 | 8.563062987
30 21.56 37.17 1.72402597 | 7.91810522 8.29804529 1000 948.27 | 1040.55 | 1.097314056 | 8.593106956 | 8.563468187
35 25.83 42.73 1.65427797 | 8.01940024 8.33163028 | 1500 | 1436.51 | 1549.62 | 1.078739445 | 8.596331691 | 8.568864785
40 30.15 48.25 1.60033167 | 8.09642008 8.35739796 2000 | 1926.59 | 2057.27 | 1.067829689 | 8.598705106 | 8.573224159
45 ) 34.51 53.74 1.55722979 | 8.15934075 8.38057564 2500 | 2417.86 2564 1.060441878 | 8.597686691 | 8.573865825
50 : 38.91 59.21 1.52171678 | 8.20927126 8.39971464 3000 | 2909.96 | 3070.09 | 1.055028248 | 8.598164177 | 8.575719902
60 47.79 70.07 1.46620632 | 8.28056481 8.42352622 3500 3402,7 | 3575.69 1.05083904 | 8.597907349 | 8.576631601
70 56.76 80.87 1.424770?7 8.33679311 8.44717140 4000 | 3895.94 | 40809 1.047475064 | 8.597663065 | 8.577381921
80 65.81 91.60 1.39188573 | 8.36534381 8.45084937 5000 | 4883.59 [ 5090.43 | 1.042354088 | 8.597493419 | 8.578844959
90 74.91 102,30 | 1.36563877 | 8.39956919 8.46692737 6000 | 5872.42 | 6099.04 | 1.038590564 | 8.597216725 | 8.579843127
100 84.06 | 112,95 | 1.34368308 | 8.42051156 8.47299223 7000 | 6862.15 | 7106.96 | 1.035675408 | 8.596971772 | 8.580637721
200 177.20 | 218.24 | 1.23160271 | 8.52492859 8.51851912 8000 | 7852.59 | 8114.33 | 1.033331678 | 8.596688461 | 8.581220123
300 271.94 | 322,30 | 1.18518791 | 8.55698859 8.53570813 9000 | 8843.61 | 9121.25 | 1.031394419 | 8.596371612 | 8.581638777
400 367.50 | 42572 | 1.15842177 | 8.57321576 8.54635133 10000 | 9835.12 | 10127.8 | 1.029758661 | 8.59616236 | 8.582069397
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Table 2. Estimated values of r, namely r,', and r(;

errors in estimating r, where ¢ = 0.05 and f=0.1.

I3

for given values of (r) together with the absolute and percentage

k (actrual) r'a Cr-ral |t - r'al/r x100% r'e r-r'¢| r - r'¢)/r x100%
40714285714 5 7 2 40,00 6 1 20.00
2.6229205176 10 12 2 20.00 1 1 10.00
2.1811279826 15 17 2 13.33 16 1 6.67
1.9561602419 20 23 3 15,00 21 1 5.00
1.8190201729 25 28 3 12.00 26 1 4.00
1.7240259740 30 33 3 10.00 31 1 333
1.6542779714 35 38 3 8,57 36 1 2.86
16003316750 40 43 3. 7.50 41 1 2.50

1.5572297885 45 48 3 6.67 46 . i 222
1.5217167823 50 53 3 6.00 51 1 2.00
14662063193 60 63 3 5.00 61 1 1.67
1.4247709655 70 73 3 429 71 1 143
13918857317 80 84 4 5.00 81 1 1.25
. 113656387665 90 94 4 4.44 91 1 1.11
1.3436830835 100 104 4 4.00 101 1. 1.00
1.2316027088 200 204 4 2.00 201 1 0.50
1.1851879091 300 305 5 1.67 301 1 0.33
1.1584217687 400 405 5 1.25 401 1 025
1.1405336612 500 505 5 1.00 500 [ 0.00
1.1274863407 600 606 6 1.00 600 0 0.00
1.1174616708 700 706 6 0.86 700 0 0.00
1.1094469282 800 806 6 0.75 800 0 0.00
1.1028615077 900 906 6 0.67 900 0 0.00
10973140561 1000 1007 7 0.70 1000 0 0.00
1.0787394449 1500 1507 7 0.47 1498 2 0.13

8.5644

* Phi(Y)

* Phi(T)

Figure 1. Graphs of the Fisher indices ¢r(r)and gy (r) for a=0.05and f=0.1.
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