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ABSTRACT  Presented theoretical paper concerns the application of the extremely sensitive Grazing-
Angle Incidence X-ray Backdiffraction (GIXB) technique for investigations of the crystal containing a
stacking fault. Fault plane is assumed parallel to the crystal entrance surface. It is shown that enfire x-ray
wave field intensity in vacuum is modulated periodically along the vacuum-crystal surface with the same
period as the crystal diffracting net planes. X-ray wave field short-period modulation along the vacuum-
crystal surface gives a possibility to determine the lateral positions .of overlaid adsorbed atoms with
respect to crystal lattice atoms by combination of GIXB with the X-ray Standing-Wave (XSW) technique
i.e. by monitoring the secondary emissions. The development of such non-destructive investigation

methods is in the focus of fundamental aspects of materials research, crystal engineering etc.

(GIXB, X-ray Standing-Wave, Crystal)

INTRODUCTION

Let consider a maodel of the crystal extended over
the volume -e0 < x <o ; -c0o < y <oo; 7 < 7.
Crystal contains a stacking fault. Fault plane z =
2z is parallel to the crystal entrance surface z =
z; (see figure 1), Accordingly, a phase shift x,
exists between the space periods of perfect
crystalling layer and perfect bulk crystal, which
are separated by the fault plane (see figure 1). If
the thickness T = z; - z; of the perfect crystalline
laye.r is about several nanometers, then the
frad;tional non-destructive  methods  of
Investigations becomes non-effective. In general
tht? X-ray investigations can be improved by
using the Grazing-Angle Incidence X-ray
Backdiffraction (GIXB) technique (e.g. see [,
2), which is extremely sensitive to lattice
Spacing period and radiation wavelength. The
GIXB scheme is possible to realise only if the
Bragg angle 65 is close to 90° i.e. GIXB is the
Bragg diffraction in the conditions of total
thernal' reflection and is superior to
conventional x-ray diffraction techniques in the

study of the crystal structure of very thin surface
layers (see figure 1). The entire wave field
intensity in vacuum is modulated along the
crystal surface with the same pericd 4 as the
period of the crystal lattice. This gives an
opportunity of determination of the lateral
positions of adsorbed atoms along OX-axis with
respect to crystal lattice atoms by combination of
GIXB with the X-ray Standing Wave (XSW)
technique. XSW method analysed the inelastic
scattering respomse of atoms (¢.g. photoelectrons
yield, fluorescerice radiation, Compton scattering
etc.) within the range of an x-ray interference
field, i.e. the XSW technique probes the in-plane
position of overlaid atoms through observation of
secondary emission profiles using the x-ray
standing wave fields (e.g. see the review [4] and
[5-8]). The combination of GIXB with XSW
studies gives new insights into the near surface
and interface séructure. In GIXB configuration
the XSW technique is based on the dynamical X-
ray wave fields formed very close to the crystal
surface when arjincident beam at a grazing angle
excites a specular and a diffracted beams from
lattice  planes =~ perpendicular or  nearly
perpendicular t6 the surface (see figure 1). The
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GIXB is considered to be dependent on the value
of the phase shift between the space periods, as
well as of the Bragg angle.

POLARIZABILITY MODEL

Let the reciprocal vector of diffracting crystal net
planes is parallel to the direction of OX-axis. In

this case the x-ray diffraction pattern contains the
information only about the direction of the OX-
axis. At the same titme such pattern is averaged
along the directions of the Oy and O2z-axes.
Further we consider the case, when the

polarizability X, (l' ) of perfect crystalline layer
with the thickness T = z, - z; is given by the
following expression:

PAGEYACIERA + X, exp(i2nx/d)+ Xz exp(—i2rx/d), (1)

where the parameter d is the period of the

polarizability X, (x) i.e. the spacing period of
the crystal diffracting net planes, The
polarizability of each set of net planes of the
natural crystals, as well as of the artificial
nanocrystals may be presented by the equation

of epitaxial layers, multilayers, low-dimensional
structures, liquid crystals, molecular and organic-
inorganic hybrid nanostructures, of many types
of biological objects etc (see e.g. [1-3]).
Formaily the deviation from the ideal-elastic
scattering (i.e. presence of the absorption in
crystalline layer) is described by the complex-

(1). The considered model of the polarizability is valued coefficients
valid for description .
Xo= _IXUJ» _iiZOi! . (2)
%, =|,.|explin, )+ i, | explio, ), ©
Xz =|xgr GXP(-i??g)H\xg.- expl- iwg), @
where
- < n g <7 , (5)
—-TSW, ST, (6)
Taking into account the relations (2)—(6) the equation (1) may be rewritten in the form below:
XL(X)=xr(x)+ ixi(x), 7
where ,
%.(x)= %, -2!953, cos [2(x +x, JZ38 ®)
Xi(x)=_|?fo;' —leg.f‘cos [2ﬂ(x+xw )/d], &)
X, =(2n)" (ng —ﬂ)d, (10)
x, =)’ (a)g —ﬂ)d , (11)

Also let assume that the condition 1>> | sin (T’]g -0, )I is fulfilled. Then the equation {9) may be

rewritten in the following form:

Xi (x)E _1Z0s| -2

Zgi‘cos(ng —cog)cos[Zﬂ(x-I-xn)/d] (12)

Taking into account the relations (8) — (12), finally the equation (1} may be rewritten as:

'"i|x0i|—2uxgr

AL (x)E _‘ZOr

+1],|cos (, —a)g)] cos 2z (x+x, d]. a3
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Malays

The bulk crystal polarizability X g (JC ) has the same value of the spacing period d, but it has a shift X
in a space phase (see figure 1):
x5 (¥)= 2. (x= %), "

where
0<x,<d. (15)

INCIDENT WAVE FIELD

In this paper we consider a case, when the stationary part of the incident wave field E ! (r ) is given by

the following equation:

E’(r): E! exp(i2n K, ' : (16)
where . ‘

K'r=xK,+zK., (17)

K =—Ksin(o'), (18)

K =—1}K2—(Ki)2 =—Kcos (6'), (19)

00 <x/2, ' (20)

‘K"EK=1/}L=vlc, @1)

technique, e.g. in the problems of solid state
physics [13, 14] and surface states physics [15],
vector, wave number, wavelength and frequency holography [16] and integrated optics [17],
of the incident plane wave (16) correspondingly; guiding and diffraction of optical radiation [18-
20], physics of multilayer semiconductor
microstructures [21], investigations of domain-
wall dynamics in ferromagnetic with anisotropy
[22], as well as in the problems of x-ray

i i .
:,, K , K, A and v are the amplitude, wave-

¢ is the velocity of light in vacuum, K ; and

i i s s
K ; are the wave-vector K projections onto

the Ox apd -Oz-axes correspondingly; 6 is Fhe diffraction by the micro and nanoscale materials
angle ?f 1{101dence of the p.Iane wave (16}, ie. with periodically modulated polarizability (see
(n’—i-B ) is the angle, which the wave-vector e.g. [1-3, 23-28]). The stationary wave field
K’ forms with the Oz-axes (see figure 1). E ‘(r ) inside the crystalline layer is described

by three scalar differential equations (see [1]):

MATHEMATICAL DESCRIPTION OF THE

PROBLEM LT
(3 2ty -
l?n% lof the equations frequently occurring in the meL =
Toblems of the Mathematical Physics, and 3 3

Particularly in the Diffraction Theory is the =—a—a—{[1+lt.(r )]—IE{ [E L(r )]m 3 ZL(’ )}} ’
second-order linear ordinary differential equation " m=l *m
with periodic coefficient. The particular case of (22)
such _¢quation is the Mathieu differential
©Quation [9-12]. Differential equation with where n = 1, 2, 3., x; = x, X, = y, X3 = z are the
%erlodic coefficient has manifold applications. variables in the Cartestan coordinate system,

ifferent forms of its periodic solutions emerge

L o
i . f the vector
I the various branches of natural science and [E (r)] m are the projections o

33
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E* (r) on the comesponding axes. The the set of differential equations (22) is possible to

. e . transform to:
magnetic permeability is set equal to unit
because we consider only a semiconductor or
dielectric structure in this paper. The incident
wave field doesn’t depend upon y, and therefore
? 82 272 L
5t t4rK [1+ZL(X)] E, (x;z)=0. (23)

2
dx* 097°
General solution for transparent crystal

If the absorption is not taken into account, then it is necessary to take

| =[2,il=0. @4)

For the hard and soft x-rays (i.e. for the values of the wavelength A ~ 0,Jnm = 50nm) and for
semiconductor and dielectric materials the following condition is fulfilled:

—x.{x)<< 1. (25)

One can transform the linear differential equation (23) to the following set of equations:

" +a—2qcos(2u) U(u)=0, 26)

O +@nYl - ay*a wiz)=0
-a?+ T — a z)=V, : 27

where

B4 (1), = E2(2) = U ) W), o
u=mx+x)d, (29)
g=(2Kd)|x,.|. (30)
k=K.\1-{x,,|, @31

a is proportional to variable separation constant. The equation (26) is well known as a Mathieu equation
[9-12]. The application of Mathieu equation to x-ray diffraction problems is a unique theoretical
approach, based on the method of construction of eigenvalues and eigenfunctions corresponding to the
mathematical model, which describes the x-ray standing wave inside, and outside the diffracting structure.
The presented method is correct for the various combinations of the wavelength range from hard x-rays to
extreme ultraviolet and the structure space period range from the Angstrom to several hundred
nanometers (which we can’t say about the generally used diffraction theories). The general solution

E;‘ (x; Z) of the set of equation (26), (27) in the case of thin layer, i.e. for the region z; <z <'z; may be

written in the following form:

2 -]
E;(mz):Z_IJ‘O [I;mDﬂ (q)ceﬂ (u,'q)+2"mD# (q)se# (u;q)] X
) (32)

Xexp[i(—l)m 27 z\/k2 -(@2d)*a, Jdu
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the equation system (26), (27) for the bulk
crystal, i.e. for the region z <zz may be written

s€, (u;q ) are the ordinary Mathieu functions as:

where 5 "Dp= 0 . The functions C€, (u;q) and

of first kind to which the eigenvalues a

. S{o
correspond. The general solution E ; (x, z) of

5 (52)=] 16, (@)ce, (410,0)+7°G, a)se a0

xexp[— 127 z\/k2 ~(2a)* a, } du

where *Gp=0 and
OSMUE(ﬂxO/d)Sﬂ.'. (34)

1

; (33)

We search the mathematical expression of electric strength [E d (!' )] , of the reflected x-ray wave field in

a Fourier integral form:
[E'(r)]y =E; (x;z)=IjNE5 (K; )exp{—iZn[xK; —zyK? - (K;)Z }}dK; (35)

Thus we are not doing any supposition concerning the character of the stationary x-ray wave field
reflected from the crystal entrance surface z = z;. The only-requirement is that the wave fields must satisfy

the boundary conditions.
Boundary conditions

If the incident wave field is given by the equations (16)-(21), then the boundary conditions have the
following form:

E;(x;zl)+E;(x;zl)—E;‘(x;zl)=0, (36)
0 T

(2 [pit )+ B3 os2)- B s} o= 0. @)
EH(ri22)- ES (152,)=0, )

(2 [er o) 53 2

Using the orthogonality conditions of  the
eigenfunctions involved in (32), (33) and (35) the
unknown weight functions “"D, (¢) ;% "Dy (q) ;

z=7 =0. (39)
2

; .

Gu(9); *Gu(q) and E, (K 4 ), which satisfy Absorbing crystal

iginzougdary conditions (36) — (39), should be ‘The absorption can be taken into account if the

reflect ne obtains the required expressions of following substitutions are made in the relations
ected and transmitted wave fields by presented below:

corre.spom_:iing substitution of the obtained weight
functions into (32), (33) and (35).
fields must satisfy the boundary conditions.

|x0r

+1] 1], (40)

— ‘X()r
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P

THE RELATIVE INTENSITY OF ENTIRE
X-RAY WAVE FIELD OVER THE
VACUUM-CRYSTAL SURFACE

The general form of the solutions (32), (33) and
(35) is very complicated, therefore we present
here and consider only the relations of reflected
X-ray wave field

[E’(r)] y = ;(x;z;xo;BB ;T) in the
particular case, when the angle of incidence ' =

Oy of the plane wave (16} is satisfying the Bragg
condition (see the figure 1):

Figure 1. GIXB scheme under the consideration. z = z; is the

crystal entrance surface. Crystal is containing a stacking fault.

+i‘xg,.[cos(ng —a)g),

(41)

Phase shift x, exists between space periods of perfect

crystalline layer and perfect bulk crystal, which are separated

{ r r
by the fault plane z = 22 K s K-, and K2 are the
wave-vectors of incident plane wave, specular backdiffracted
wave and specular reflected wave respectively. The angle of
incidence 8’ of the incident plane wave is satisfying the

Bragg condition, i.c. 8° = 8z, where 85 is the Bragg angle,

Kr _ Ki r

1 == , wave-vector Fh o makes an angle 26

with the wave-vector -; R
i r r

‘K‘=|K1 =|K2:1/A-,where}l is the

wavelength of the incident plane wave.

2 2
E; (x;z;xO;QB;T)= ZE;” (x;z;xO;GB;T)= C ZA” exp(i27rK,: r), (42)
where " "
C= ‘E{,‘exp[iZﬂK(xn sin@, —2z,cos0, )] (43)
K;rEK[(—l)"“xsinGB +zcos63] , (44)
A = [L1 + (- 1)”L2] exp [i27rK(— 1)'”1 X, sin 93], (45)
I (u )= —l+ COSQB[1+ Fl(uo)—Vz(uo)+i2M1p2(u0)W(u0)]
0T  cos@, + M+ [F(u,)- V()] (cos 0 -M,) o
B 1 1 ] 2 0 B 1
_ __}_ C0593[1+ Fz(”o)_vl(uo)"izMz pl(uo)W(uo)]
Lz(”o) + 47)

2 cosf, +M, +[F2(u0)—Vl(uo)](00593 —Mz) ’
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M, = [(COS 65 )Z_IZOr +(-1)" Xer ]Uz , : (48)
V,(uo)=(cos8y —M,) W?{uy) p,(u,) 2, (,), 49)
paluo)=1,@0) s, (u,), (50)

s, (uy)=c0s6,+M_ +F,(u,)(cos6,-M,), 51)
Z, (uO)E M, Sin(2u0)exp [iZ%KT(Ml + Mz)], (52)
F,(uo)= (1) W, )lsin(u,)]* (M, + M, )explidnkTM , ], (53)
Wluo)= M.~ M, (54)

K; is the wave-vector of the specular
backdiffracted wave field

E;I (x; Z;XO;QB;T) reflected from crystal
in the direction opposite to that of the incident
wave field with wave-vector K' {(see the figure

B KE is the wave-vector of the specular
reflected wave

4M M, + [(Mz_Ml)Sin(uo)]z ’

field E;g(x;z;xg;BB;T) and makes an

angle 20y with the wave-vector K; (see the

figure 1).

The relative intensity

I (—7‘7; YA T 93, T) of entire x-ray wave field -

in the vacuum z > z; is given by the following
‘equation:

I(x; z;xO;BB;T)E ’Ei(x; z)’_2 {E" (x; z)+ E; (x; zZ; x@;BB;T)Iz', (55)

RESULTS AND DISCUSSION

The images of relative intensity

I (x; 25 %0305 T) of entire x-ray wave field
in the vacuum are calculated depending on the
Bragg angle and on parameter #/d in the case z=
10d, T =200d, and x,,= 7; = 0 (see figures 2 - 4),
Belative intensities are computed in the case of
Incident plane wave of wavelength A within the
region 0,178909nm > A > 0,178899nm i.e.
within the CoK,; line, which is backdiffracted by
the (620) planes of absorbing germanium crystal,
Thus_ the wavelength dependence of the
polarizability is neglected because the

calculations are carried out for a very small range

of Bragg angles. One can change the Bragg angle
O either by varying the incident radiation

wav_elleng_tl.l llor the spacing period d of the
arizability, i.e. by the variations of the sample

pol

temperature, The polarizability coefficients are
calculated based on data presented in [29].

Image of the relative intensity / (x; 7;0, ) of
entire x-ray wave field over the surface of perfect
absorbing germanium crystal extended over
volume O = z is presented in the Figure 2.




Malaysian Journal of Science 21A: 31-40 (2002)

Figure 2. Graphic of the relative intensity 1 (JC ;2,0 B)

of entire x-ray wave field over the surface of perfect single
crystal extended over the volume Z; Z z depending on the
parameters x/d and 8y , where 65 and A are the Bragg angle
and the wavelength of the incident plane wave respectively.
Computations are performed. in the case of absorbing
germanium crystal and fulfillment of the conditions: x,=z;=
0. z - z = 10d. Variations of the incident radiation
0,178909nm 2

wavelength A within.  the region

A 20,178899nm changes the Bragg angle 6; in this figure.

Image of the relative intensity

1 (x§ 2;%0;0, ;T) of entire x-ray wave field
over the vacuum-crystal surface z; = 0 is
presented in the figure 3. Computations are
performed in the case of absorbing germanium

crystal containing a stacking fault with phase
shift xy = d/6.

Another image of the relative intensity
I (X; 2, %,4,0 B;T) of entire x-ray wave field
over the vacuum-crystal surface z; = 0 is
presented in the figure 4. Computations are
performed in the case of absorbing germanium

crystal containing a stacking fault with phase
shift xp= df3.

Analysis of the equations (42)-(53), as well as of
the images presented in figures 2 - 4 shows that
relative intensity I (x; Z5 X5 G B> T) of entire

xray wave field in the vacuum z > z; is
modulated periodically along the vacuum-crystal
surface z = z; with the same period d as the
crystal diffracting net planes {(a short-pericd
modulation). Also the relative Intensity

I (X; YA A 0 B T) of entire x-ray wave field
in the vacuum is modulated in the direction

normal to vacuum-crystal surface Le. in the Oz.
axes direction, However, in Oz-axes direction
the relative intensity modulation period is much
Ion_ger than the lattice space period d (a long-
penodl modulation), The short-period  x-ray
Intensity modulation along the vacuum-crystal
surfa'ce gives a possibility to determine the lateral
posttions of overlaid adsorbed atoms with respect
to crystal lattice atoms by combination of GIXB
“f1th XSW technique even in the case when the
diffracting crysta] contains a stacking fault with
fault plane parallel to the crystal entrance
surface. Also note that if a phase shift x, between
the space periods of perfect crystalling layer and
perfect bulk crysta] equals to 0 or d (see figure 2)
then the GIXB equations (42) and (55) coincides
with the resylts presented in [1] and [23],

2 89,4
Figure 3. Graphic of the relative intensity

I(x, X, ;63 ,T) of entire x-ray wave field over the

vacuum-erystal surface 7z = o, depending on the parameters
+/d and 8y, where x, , B, Tand A are the shift in the space
phase, the Bragg angle, the thickness of perfect crystalline
layer and the wavelength of the incident plane wave
respectively. Computations are performed in the case of
absorbing  germanjum crystal and fulfillment of the
conditions: x, =gz, = 0, z-2, =104, x= di6, T=z,-75,=
200d. Variations of the incident radiation wavelength
A within the region 0,178909nm > A > 0.17889%nm changes
the Bragg angle 8 in this figure,
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relative

Graphic of the

Figure 4. intensity

I (x; L% ,9 B ;T)of entire x-ray wave field over the

vacuum-crystal surface z = z; depending on the parameters
x/d and 6y, where xp , 6, T and A are the shift in the space
phase, the Bragg angle, the thickness of perfect crystalline
layer and the wavelength of the incident plane wave
respectively. Computations are performed in the case of
absorbing germanium crystal and fuifillment of the
conditions: x,=z;=0, z2-2,=10d, xp=4df3, T=z- 3=
200d. Variations of the incident radiation wavelength
" A within the region 0,178909nm = A 2 0,178899nm changes
the Bragg angle 8z in this figure,

CONCLUSION

Relative intensity (55) of entire x-ray wave field
in vacuum is modulated along the crystal
entrance surface with the same period o as
diffracting net planes of the crystal (a short-
period modulation). This gives an opportunity of
determination of adsorbed atoms position along
Ox-axis with respect to crystal lattice atoms.
Thus the combination of GIXB method with
XSW technique is also applicable for the surface
structure analysis in the case when the diffracting
crystal contains a stacking fault with fault plane
parallel to crystal entrance surface.
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