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ABSTRACT  This paper considers the problem of outlier detection in-bilinear time series data; with
special focus on two most basic models BL(1,0,1,1) and BI{1,1,1,1), The formulation of effect of
additive outlier on the observations and residuals has been developed and the least squares estimator of
the outlier effect has been derived. Consequently, an outlier detection procedure employing bootstrapping
method to estimate the variance of the estimator has been propesed. In this paper, we propose to use the
mean absolute deviance and trimmed mean methods to improve the performances of the procedure.
Using simulation works, we show that trimmed method has successfully improved the performance.
Subsequently the procedure is applied to a real data set.

ABSTRAK Kertas kerja ini mempertimbangkan masalah pengesanan data terpencil di dalam data
siri masa bilinear; fokus diberikan kepada dua model asas BL(1,0,1,1) dan BL(1,1,1,1). Zaharim e, al.
[8] telah mencadangkan formulasi kesan data terpencil tertambah ke atas cerapan dan ralat dan seterusnya
menerbitkan penpanggar kuasa dua ralat terkecil. Kaedah boosstrapping telah digunakan untuk
menganggar varians bagi penganggar tersebut. Di dalam kertas kerja ini, kami menggunakan mean
absolute deviance dan trimmed mean untuk memperbaiki pencapaian kaedah tersebut. Dengan
menggunakan kerja simmulasi, kami telah menunjukkan bahawa kaedah berdasarkan trimmed mean telah
berjaya memperbaiki pencapaian prosedur. Seterusnya, prosedur ini telah digunakan ke atas data nyata.

(Bilinear, additive outlier, least squares method, bootstrépping, rainfall data)

INTRODUCTION model. In this paper, we attempt to improve the
performance of the least squares procedure.

Fox [1] was among the first to study the problem Instead of using the standard formula of variance,
of outliers in time series. He developed likelihood we utilize the mean absolute deviance and
ratio tests to detect additive outlier and trimmed mean methods to estimate the variance
innovational cutlier in non-seasonal of the estimators. We show that the performance
auforegressive models of order p. Others is better when trimmed mean method is used.
followed, for instance, [2, 3, 4, 5]. Fewer studies _
are found on the detection of additive outlier in BILINEAR MODEL
bilinear models; Chen [6] used Gibbs sampling
method for general bilinear model while [smail et Granger and Andersen [9] ‘had formally
al. [7] and Zaharim et al. [8] used least squares introduced the general bilinear model, denoted by
method for two most simplest order of bilinear BL(p.q.r.5), which is given by
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where @, c; and b, are any real numbers
satisfying the stationary condition of the model
whereas 7, and e, are the observation and

residual respectively, 1 =1, 2, 3, ... The e 's are

assumed to follow normal distribution with mean
zero and precision 7, ¢ > 0. The model is a
simplified case of nonlinear Volterra series
expansions and extension of general linear
autoregressive moving average model of orders p
and g.

Various methods of estimating the parameters of
bilinear models are available. In this paper, the
nonlinear least squares estimation method as
proposed by Priestley [10] is used. The method is
recursive in nature and the estimates are obtained
when the convergence property is satisfied.

THE'OUTLIER DETECTION PROCEDURE

The procedure for detecting outliers as proposed
by Zaharim ef. al. [8] is described here. The
procedure is meant to detect additive outlier in
data generated from BL(1,1,1,1) model, which is
given by

Yt = aYt_l + C‘et___l + bYt_l et_l + et (2)

The results also holds for BL{1,0,1,1) models by
taking ¢ = 0 in the preceding formulae.

Let Yr* be the observed values from BIL(1,1,1,1)
process with an additive outlier occurs at time
point t=4 with magnitude @ and e: be the

resulting residual when BL(1,1,1,1) is fitted on
the contaminated data, ¢ =1,2,...,#. Further, let

Yt and e be the residuals that would have been

obtained if there were no outliers in the data and
will be referred herewith as 'original observation'
and 'original residual' respectively, For ¢ <d;

clearly ¥ =7, ando* =¢,. For t2d and

k=0, the formulations for Yr* and el is

described below,

Let an additive outlier occurs in BL(1,1,1,1)
model at time z = 4. It has been mentioned in
many papers, including [6], that contaminated
observation due to additive outlier will differ
from the original observations according to the
following rule:

. Y, P = d
y & = ' (3)
Y + @ t = d

The rule suggests that the shock caused by an
additive outlier affects the original observation at
¢ = d only with a magnitude o and the rest remain
unaffected as illustrated in Figure I{a).
Consequenily, the residuals will be affected and
differ from the original residuals. Zaharim ez, al.
[8] had shown that the effect on residuals can be
described by the following formulation:

Cd sk = ed+k+(_1)kfd+k O
whete

w k=0

fd+k=<a)(a+bed)+(b}’; +c)fd k=1
(b ) +c}'a’+(k—l) k=23

Several residuals after = d were disturbed as
illustrated in Figure 1{b).
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Figure 1.  The effect of AO on (a) observations (b) residuals

The statistics to measure the magnitude of outlier
effects for additive outlier can now be obtained
using the least squares method by minimizing the
equation:

_ Yy 2
= dzl 63 + Z?Z (e:uk - {‘ l}k Tavk (w)) )

=1

Equation (5) is then minimized with respect to

@, yielding the following measure of outlier

effect for additive outlier:

n—d
k
) [{‘1} €ask A‘ki!
n—d
2
> 4
k=0 k

()

1 k=0
A =1 (a+be,)+ by, +c) k=1
(bYrH(k-l) + C)A,‘_, k=2

Zaharim et. al. [8] further used the bootstrap
method to obtain the estimates of the standard
deviation of &. The importance of bootstrap
method has been highlighted in  many
applications on time series data [11]. It is carried

out through the process of drawing random

samples with replacement from the residuals as
described below:
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(a) Let (e,,e,,..,e,) be the original residuals.

Sampling with replacement is carried out from

the original residuals giving a bootstrap sample

of size n, say, e*(1)=(e;“,e’2', ..,e ). This is
n

repeated a large number of times, say B times,
giving B sets of bootstrap  samples
A) b))

(b) For each bootstrap sample M)y = 1, 2,
.., B, we calculate -

{c) The sample standard deviation of @ is given
by

o i ¢
BS (8-1)

where

= g -1 g -

ar = a .
BS M o= M

Efron and Tibshirani [11] showed that as B — o,
Gps, approaches g, the bootstrap estimate of

the standard deviation.

Let Hy denote the hypothesis that @ =0 in the
bilinear model considered and H, denotes the
situations e # 0 in bilinear model with additive
outlier respectively at time #. The following test
statistics can be used to test the hypothesis:
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Table1. The performance of three procedures for BL(1,0,1,1) models
' BL(1,0,1,1)
CO- MAGNITUDE METHODS PROPORTION OF MIS-
EFFICIENTS OF OUTLIER CORRECT DETECTION DETECTION
: 2.5 3.0 3.5 4.0
Standard 0.56 0.42 0.20 0.14 0.43
Trinmed mean 0.43 0.42 0.35 0.27 0.57
3 MAD 0.44 0.38 0.26 0.23 0.54
Standard 0.75 0.68 0,56  0.39 023
Trimmed mean 0.72 0.71 0.67 0.61 0.28
a=0.1 4 MAD 070 066 056 041 0.30
b=0.1 Standard 091 087 077 068 0.09
Trimmed mean 0.90 0.90 .90 0.87 0.10
B MAD 0.92 091 0.87 0.76 008 v "
Standard 0.33 0.26 0.11 0.04 0.64 "
Trimmed mean 0.27 0.25 0.15 0.13 0.70
3 MAD 026  0.18 0.08 0.06. 0.73
Standard 0.26 0.30 0.17 0.14 0.64
a=-0.2 Trimmed mean 026 026 022 021 0.74
b=0.4 4 MAD 023 022 018 0.1 0.65
Standard 0.53 0.50 0.45 0.38 0.47
Trimmed mean 043 0.43 0.43 0.39 0.57
5 MAD 0.48 0.44 0.40 0.35 0.52
Standard 0.51 0.34 0.25 0.15 0.46
Trimmed mean 0.48 0.45 0.32 0.26 0.51
. 3 MAD 0.44 0.36 0.25 0.18 0.55
Standard 0.76 0.66 0.55 0.35 0.24
a=0.3 Trimmed mean  0.68  0.68 063 055 0.32
b=-0.2 4 MAD 0.70 0.63 052 037 0.29
Standard 0.77 0.72 0.61 0.50 0.22
Trimmed mean 0.78 0.77 0.75 0.69 0.22
5 MAD- 0.76 0.71 0.58 0.56 0.24
[ 6 -5 ) (3) Let p= max {]ft\ } Given a pre-
. t BS .t (8) t=1,2,..,n
e T & ps- s determined critical value C, if p, ¢, then there
’ is a possibility of an additive outlier occurring at
where 7 is bootstrap mean and &g, 1S the tme 7.

bootstrap standard deviation of statistics of THE IMPROVED VERSION OF OUTLIER

interest at time 7. The following procedure can
now be used to detect the occurrence of additive
outlier at time £

(1) Compute the least squares parameter
estimates of model based on the original data.
Hence, obtain the residuals.

(2) Compute ft for each, ¢=1, 2, ..., # using

the residuals obtained in Stage 1.
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DETECTION PROCEDURE

In this paper, we attempt to improve the
procedure presented in the previous section.

(a) the mean absolute deviance method
Tnstead of using equation (7) to calculate the
standard deviation of @, we propose to use the

method suggested by Hampel et al {12] i

which the standard deviation is computed using
the following relationship
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These methods are expected to be able to
overcome the problem of overestimation in the

&,.up = 1483 x median {'a')t —&3'}
computation of standard deviation.

where @& is the median of the bootstrap

~ .

. SIMULATION
estimates, @,

The outlier detection procedure is now applied
to cases characterized by a combination of the
following factors:

(b) the 10% trimmed mean method

The calculation of standard deviation used the

trimmed sample such that smallest and largest

10% of EM are removed from the calculation. (a) two ' wunderlying BL(1,0,1,1) and
BL(I,1,1,1) " models but  with different

combinations ~ of coefficients. Co

{b) a single additive outlier at ¢ = 40 in samples

of size 100.

(c) three different values of outlier effect; w=3,

4andS.

(d) critical value; 2.5, 3, 3.5 and 4.

Equation (7) is then used to give the standard
deviation, &
™

Table2. The performance' of three procedures for BL(1,1,1,1) model

_ BL(1,1,1,1)
CO- MAGNITUDE METHODS PROPORTION OF MIS-
EFFICIENTS  OF OUTLIER CORRECT DETECTION DETECTION
2.5 3.0 3.5 4.0

Standard 085 067 042 0.12 0.15

Trimmed mean 0.67 0.64 0.57 0.40 0.33

R 3 MAD 071 057 034 0.14 0.29

: Standard 0.74 061 043 034 0.21

Trimmed mean 0.66 0.64 0.60 0.50 034

al=0.1 4 MAD 0.67 060 044 031 0.33
a2=20.1 Standard 081 074 067 052 0.14
b=0.1 _ Trimmedmean 079 079 079 071 0.21
5 MAD 0.83 074 0.67 050 0.17

Standard 0.55 0.38 0.24 0.15 0.38

Trimmed mean 045 042 031 025 0.55

3 MAD 041 038 029 0.14 0.53

Standard 0.67 057 043 029 0.28

Trimmed mean  0.62 059 056 048 0.38

al=-0.4 4 MAD 063 059 041 031 0.36
22=0.1 Standard 089 083 067 0.8 0.08
b=0.2 Trimmed mean  0.85 0.84 079  0.74 0.15
5 MAD 084 078 070 0.6l 0.16

Standard 066 049 043 0.29 0.29

Trimmed mean 0.58 0.53 0.44 0.36 042

3 MAD 052 036 029 026 - 0.43

Standard 0.81 0.81 058 042 0.19

al=0.3 Trimmed mean  0.66 0.66 0.62  0.59 0.34
a2=-0.3 4 MAD 071 064 046 039 0.29
b=0.2 Standard 077 073 069 0.5 0.23
Trimmed mean 0.81 0.81 0.78 0.74 0.19

5 MAD 077 0.73 0.73 0.73 0.23

111



Malaysian Journal of Science 27 (2): 107 — 113 (2008)

Six different series were generated to contain a
single additive outlier. For each model, 500 series
of length 100 were generated using the rnorm
procedure in  S-Plus. Summary of the
performance of the procedures is given in Table 1
and Table 2. In each table, the values in columns
4-7 represent relative frequency or proportion of
correctly detecting additive outlier with correct
location at ¢ = 40 for critical values equal 2.5, 3,
3.5 and 4 respectively for different methods and
magnitude of outlier. On the other hand, values in
colummn 8 give the relative frequency of
misdetecting the additive outlier at time point
different from ¢ = 40, B

Two main results are observed. Firstly, all three
procedures perform quite well. As expected, the
performance of the procedures improves when
larger value of w are used. Also, as larger
critical values are used, the proportions of
detection decrease. However, the performance is
reduced when larger coefficient values are used.
It is known that when larger coefficient values
are used, there tends to be more spikes appearing
in the data generated from bilinear process.
Consequently, it is expected to be harder to detect
the outlier especially for small values of @,
Secoridly, in general, the procedure based on
trimmed mean has improved the detection of
additive outlier compared to the standard
procedure. However, the performance of the
procedure based on MAD does not differ much
from the standard procedure.

APPLICATION: LOCAL RAINFALL DATA

The rainfall data was collected from Kampung
Aring weather station, Kelantan, Malaysia for the
period of August 1995 till July 2002. The plot of
monthly average in millimeter is given in Figure
2. It can be observed that the data is generally
stationary in mean and variance except at time
points 41 and 77, where heavy rainfalls were
heavy. ’

Nonlinearity test has been widely used to
determine whether a given data set is linear or
nonlinear [13, 14]. Two such tests are Keenan’s
test and F-test. When applied on our data, the
tests give p-values of 0.0293 and 0.2777
respectively. The Keenan's test strongly suggests
that the data is nonlinear and should be fitted
using nonlinear time series model.
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Figure 2.  Plot of the Kampung Aring rainfall

data

We apply both the BL(1,0,1,1) and BL(1,1,1,1)
models on the data. The results are tabulated in

Table 3. In can be seen that the values of crz,

AIC, BIC and SBIC for BL{1,0,1,1) model are
lower than that of the BL(1,1,1,1} model.
Further, diagnostic check-up on the resulting
residuals of BL(1,0,1,1) model suggests that the
medel is pmodel is preferable.

The detection procedure based on BL(1,0,1,1)
model is then applied on the data. Results are
given in Table 4. Note that, if lower critical point
is used, say 2.5, then all three procedures are able
to detect the additive outlier at time point 0 as the
values of test statistics are greater than 2.5
However, if we choose cut point of 3.5, then only
the procedure based on trimmed mean method
will detect the outlier. That means that the new
procedure based on the trimmed mean will still
detect observation 40 as outlier when critical
value as high as 4.0 is used.

CONCLUSION

The outlier detection procedure for BL(1,0,1,1)
and BL(1,1,1,1) to detect additive outlier that
occurs at a particular time point ¢ by using the
values of the improved test statistics is proposed
in this paper. Simulation study showed that, in
general, the three procedures work well in
detecting additive outlier with the procedure
based on trimmed mean method shows better
results compare to the others. The proportion of
correct detection is higher when the magnitude of
outlier effect is large. The detection procedure is
applied on a local rainfall data set and it is able to
detect an additive outlier in the data set.
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Table 3.  Results for selected models for the Kampung Aring Data

MODEL BL(1,0,1,1) BL(1,1,1,1}
PARAMETER ESTIMATES a = (.364, se(a) = 0.151 a = 0.624, se(a) = 0,387
= —0.001, se(b) = 6.0004 =—(.289, se(c) = 0.402
b =-0.001, se(b) = 0.0004

Variance of residuals, aé 18998.02 60116.00

Akaike's Information Criteria 1068.66 107571

{AIC)

Akaike's Bayesian Information 837.14 847.62

Criteria (BIC)

Schwarz's Criterion (SBIC) 835.14 844.62

Table 4.  The test statistic value of additive outlier detection procedure on the Kampung Aring rainfali

data based on BL(1,0,1,1) model

METHODS

POINTS STANDARD MAD TRIMMED MEAN

40 2.9604 3.1308 4.010
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