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ABSTRACT  An algebraic structure naturally occurs as genetic information gets passed down
through the generations. The existence of associative algebras with genetic realization is proved.

(Associative algebra, genetic realization, quadratic stochastic operator)

HISTORY OF GENERAL GENETIC MENDEL GENETIC ALGEBRA
ALGEBRAS
* Mendel, in his first paper [4] exploited some
The theories of heredity attributed to Gregor symbolism, which is quite algebraically

Mendel (1822 - 1884), were based on his work suggestive, to express his genetic laws. In fact, it
with pea plants. But his work was so brilliant and was later termed "Mendelian algebras” by several
unprecedented at the time it appeared that it took authors. In the 1920s and 1930s, general genetic
thirty-four years for the rest of the scientific algebras ~ were  introduced.  Apparently,
commmunity to catch up to it. The short Serebrowsky [6] was the first to give an algebraic
monograph, Experiments with Plant Hybrids, in interpretation of the multiplication sign “x”,
which Mendel described how fraits were which indicated reproduction, and to give a
inherited, has become one of the most enduring mathematical formulation of the Mendelian laws.
and influential publications in the history of The systematic study of algebras occurring in
science. He saw that the traits were inherited in genetics was due to I. M. H. Etherington. In his
certain numerical ratios. He then came up with paper [1], he succeeded n giving a precise
the idea of dominance and segregation of genes mathematical formulation of Mendel's laws in
and set out to test it in peas. [t took seven years to terms of non-associative algebras.

cross and score the plants to the thousand to

verify the laws of inheritance. From his studies, More recent results including evolution in genetic
Mendel derived certain basic laws of heredity: algebras can be found in the book [3]. A very
hereditary factors do not combine, but are passed good swrvey article is Reed's [5].

intact; each member of the parental generation

transmits only half of its hereditary factors to General genetic algebras indeed are the product
each offspring (with certain factors "dominant” of interaction between biclogy and mathematics.
over others); and different offspring of the same In addition, Mendelian genetics offers a new
parents receive different sets of hereditary object to mathematics that is general genetic
factors. Mendel's work became the foundation for algebras. The study of these algebras reveals the
modern genetics. . algebraic structure of Mendelian genetics, which

always simplifies and shortens the way to
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understand the genetic and evolutionary
phenomena in the real world.

GENETIC MOTIVATION -
Before we discuss the * genetic from a

mathematical perspective, it is useful to know
some of the basic language from biology. A gene
is a unit of hereditary information. The genetic
code of an organism is carried on chromosomes.
In addition, each gene on a chromosome can take
different forms that are called alleles. For
example, the gene that determines blood type in
humans has three different alleles, that are A, B,
and O. Blood types for human are determined by
two alleles since humans are diploid organisms.
This means that we carry a double set of
chromosomes, one from each parent. Moreover,
when diploid organisms reproduce, a process
called meiosis produces sex cells that are called
gametes. Gametes carry a single set of
chromosomes and when gametes fuse or
reproduce, the result is a zygote, which again is a
diploid cell.

SIMPLE MENDELIAN INHERITANCE

As a natural first example, we consider simple
Mendelian inheritance for a single gene with two
alleles A and 4. The rules of simple Mendslian
inheritance indicate that the next generation will
inherit either 4 or ¢ with equal frequency '%.
Therefore, when two gametes reproduce, a
multiplication is induced which indicates the way
the hereditary information will be passed down to
the next generation. This multiplication is given
by the following rules:

AxAd=A, )]
Axa=%A+Y%a, )
axA=Ya+ A, {3)
axa=a, ()

Rules (1) and (4) are expressions of the fact that
if both gametes carry the same allele, then the
offspring will inherit it. Rules (2} and (3) indicate
that when gametes carrying 4 and a reproduce,
half of the time the offspring will inherit 4 and
the other half of the time it will inherit a.

REMARKS
The rules (2) and (3) have a statistical nature. Let

us consider N pairs of gametes carrying A and 4
respectively. Let N; be the number offspring

inheriting A and No= N — N; be the number
N,
offspring inheriting @. Then the ratio F‘

represents the frequency of allele 4 and it
indicates that the next generation will inherit A

2 o

N
with frequency-]\—;. Similarly the ratio

N

FI represents the frequency of allele & and it

indicates that the next generation will inherit a

N
with frequency 72 . Thus for simple Mendelian

N, _ N,

N
next generation inherit either 4 or a with equal
frequency %.

1
inheritance we have — =-—  that is the

The rules (1 - 4) are an algebraic representation
of the rules of simple Mendclian inheritance. This
multiplication table is shown in Table 1.

Table 1. Multiplication Table for Simple
Mendelian Inheritance
A ' a
A A (A +a)
a Y (a+ A) a
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We should point out that we are only concerning
ourselves with genotypes: gene composition and
not gene expression or phenotypes. Hence, we
have made no mention of the dominant or
recessive propetties of our alleles,

Now that we have defined a multiplication on the
symbols 4 and & we can mathematically define
the two dimensional algebra over the set of real
mumbers R with basis {4, a} and multiplication
table as in Table 1, This algebra is called the
gametic algebra for simple Mendelian inheritance
with two alleles.

THE NONASSOCIATIVITY OF
INHERITANCE

For those elements of the gametic and zygotic
algebras which  represent  populations,
multiplication of two such elements represents
random mating between the two, populations.
From Table 1, we can see that the genetic algebra
is commutative. In biological terms this means
that result when population P mates with
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population Q is the same as when population Q
mates with population P. Thus the algebra holds
the commutative property.

However, if population P mates with population
Q and then the obtained population mates with R,
the resulting population is not the same as the
population resulting from P mating with the
population obtained from mating Q and R
originally. Symbolically,

(P x Q) x R is not

equal to P x (Q x R). For
example, .

Ax(Axa)=Ax(% A+ a)= %(AXA)Jr %(Axa)—

1 1. 1 3 1
—At—At—a=—A+— a.
47 47 4 4

1
However (AxA)xa =Axa = 5 (4 + a) ,so that
Ax(Axa)* (AxA)xa.

In general, the algebras which arise in genetics
are commutative but non-associative.

Nevertheless, in_this report we will show the
existence of associative genetic algebras and
discuss the biological meaning of such algebras.
We will apply the theory of quadratic stochastic
operators [2].

QUADRATIC STOCHASTIC OPERATOR
The set S™' = {x= (x|, X3..., %) € R": x;20,i=
1,2.nand Y x; =1}is called

=1

(n -1} dimensional simplex in R

If n = 2, the 1-dimensional simplex S'in R* has
the following form:

X2
1
1
! S
X1
0 1
Figure 1.  1-Dimensional Simplex S'in R
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A mapping V: $"' = 8"'is called a quadratic
stochastic operator, if for any

x=(X1, X2 5.0, X)) € 8™, x' = Vx is defined as
n
r__
w = DB, %
fj=1
where the coefficients £, (so-called
coefficients of heredity) satisfy the following
conditions:
1) P,j,k =0
{ii) 'sz.k= Pji,k »
and *

{iif)

?
Z Rj,k =1
k=1

foralli,j, ke {1,2,...,n}.
Ifn=2andx=(x,x) € S', then
x' =Py x> +2 Py xxa+ Py X

_ 2 2
X' =Piax," +2Ppaxixat Poa Xy

As for a numerical example, if we let:

Pyi=1Ppi=% Py =10
and respectively
Pp2=0Ppa= Pya=1

then X1'=1'X12+2(1/2)X1XZ+0‘I22
=x Fx=x(xtn) =x
and x,' = xa. :

‘We shall call a quadratic stochastic operator V a
genetic realization of some model of heredity.

ALGEBRA WITH GENETIC
REALIZATION

Mathematically, the algebras that arise in
genetics are very interesting structures. They are
generally commutative but non-associative, yet
they are not necessarily Lie, Jordan, or alternative
algebras. In addition, many of the algebraic
properties of these structures have genetic
significance. Indeed, the interplay between the
purely  mathematical structure and  the
corresponding genetic properties makes this
subject so fascinating.

The most general definition of an algebra®R
which could have genetic significance is that of
an algebra with genetic realization.
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Let a quadratic stochastic operator V: §™! - g
be a genctic realization, where V is defined by

cubic matrix {Pﬁ!k i, Jok =1,...,n} suchthat

M Byzo
(i) sz,k= f‘},.,k and;

i) Y B, =1
k=1

An algebra R with genetic realization V is an
algebra over the real numbers R which has a
basis {a; ..., a,} anda muitiplication table

H
aa; = Z‘D&,kak
k=1

where 0< F, <1 foralli j, k and ZPI]._,{
k=1

1

for all 4, j=1, .., n

Here Py..k is a frequency that the next generation

reproduced by two gametes carrying a; and a
will inheritay, £=1,2, .., n.

Such a basis is called the natural basis for % .
Ifn=2, {4, a} is the natural basis of B and if
PAA,A=1 PAa,A=% Paa,A‘ = Q
then we have the simple Mendelian inheritance
algebra.

ASSOCIATIVE ALGEBRAS WITH
GENETIC REALIZATION

Now we will describe associative algebras with
genetic realization. Here we will restrict
ourselves to the case n=2, '

Let {4, a} be the natural basis of 1 as above in
the case of simple Mendelian inheritance,
Assume P, is a frequency that the next
generation reproduced by two gametes carrying
A will inherit A andP,,, isa frequency that the
next generation reproduced by two gametes
carrying A will inherit a ,then

Puoes+ Py, =1(see Remark).
Sirm']arly PAa,A + 1:‘.‘,4(1,(;i Paa,A + Paa,a =1,

where Py, 4 (resp. Py )isa frequency that the
next generation reproduced by gametes carrying
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Aand a will inherit A (resp. a), and Poaa (resp.
Puca) is a frequency that the next generation
reproduced by two gametes carrying a  will
inherit A (resp. a) (sce Remark).

A member u of algebra R is a linear
combination of A and a, that is u=AA-+ua, where
A and y are arbitrary real numbers. Now algebra
R is associative if for any u, v, we R we have:
(u vy w=u-(v-w),

It is easy to see that an n-dimensional algebra
with 2 genetic realization is associative if and
onlyiffor 4, j,k,5=1,...n

n "
Z Rj,rPrk,s = Z Pfr‘.s'ij(,r
r=| r=1

becomes for i j. k=12
FyiPus +FyaPop, = i,s P B Py

For #=2 this

This clearly holds if i =k, so we may as well
assume that i=1 and k=2, giving
Bl PP =01,Ppy +P;y Pias
for j,5=12, :
Using the fact that P, | +F;,=1 forij=1,2itis
straightforward to check that this holds precisely
when _

2
APy + Py ~ B3, Py, =0.

THEOREM OF ASSOCIATIVE ALGEBRA

We have proved the following theorem.
Theorem: The two-dimensional algebra with the
standard basis {4, a} and with genetic realization

Py a-P, Pye 4-P; Poo 4-Ps
and
P/M,aﬁl"Pl PAa,a=1'P2 P(m,a=1'P3

Is associative algebra if and only if the
coefficients P,, P, P, satisfy the following
equation

PPy +Py-PP-Py=0  (5)
We denote P, = x, Py = y, P= z and rewrite
equation (5) in the following form:
z=(xty)/y (6)

The variables x, y and the function (6) should to
satisfy following conditions:

(a) 0sx=1,

by 0sy=1,

(c) 0sz=1
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Let us describe all possible values {x, y) such that

Thus for any x e [0, 1], and x —x’gys1, we

The chosen surface on Figure 4 is the area that
the algebra generated by point on this surface is
associative. Any point that lies outside the
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0 £ z £ 1. Consider the following two have 0 S (¥’ ~x +3)/y <1
inecualities;
(F-x+y)/ysi (7) and;
(F-x+3)/y20 ®) y
From (7) we have: 1
Fox+y<y’—xs0;thusxx—1)<0
which valid for allx ¢ [0, 1]
From (8) we have
2 v ry<0 -
X —xrysvoryzx—x 1/ /\
Let us consider the graph of the function £ (x) = x / : \
- x:}
0 1
y Figure 3. Domain of the function z = f (x,»)
1 with 0 £z=1
The shaded region on Figure 3 is the domain of
the function z = f'(x,y) such that 0 £z <1.
& Let us consider the graph of function z=f{x,y)
{Figure 4).
X
0 . 1
Figure 2.  Graph of the function f(x} = x - x°
1 —:
(= —
0L
= R
(o P f
1
i B
0.5
* os /(D_/-BX
Figure 4.  Graph of the function z=f{x,y)

surface determines an algebra that is not

associative.
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CONCLUSION

Let us call a population Q an associative one if
the genetic algebra corresponding  to s
associative. Gregor Mendel showed that the
genetic algebra corresponding to a population of
pea plants is not an associative algebra. We have
proved that there are associative algebras
corresponding to associative populations.

There arises a natural question:

Are there in nature associative populations?

We address this problem to specialists in
biotechnology and genetic engineering. Probably
associative populations have some unexpected
properties.
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