Phytochemical study of South American Ilex

D. Guillaume¹, G. Gosmann^{1,2} and E.P. Schenkel²

¹Laboratoire de Chimie Thérapeutique, URA 1310 du CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l'Observatoire, 75270 Paris Cedex 06, France, ²Facultade de Farmacia, Universidade do Rio Grande do Sul, Av. Ipiranga, 2752,90610-000 Porto Alegre, RS, Brazil

ABSTRACT The structure of five triterpenoid saponins (matesaponins 1-5) isolated from *Ilex* paraguariensis is reported. Structural elucidation was performed using mass spectrometry and NMR techniques.

ABSTRAK Struktur 5 saponina triterpenoid dari *Ilex paraguariensis* dilaporkan. Elusidasi struktur dijayakan dengan menggunakan kaedah RMN dan kaedah spektrometri jisim.

(Ilex paraguariensis, Aquifoliaceae, matesaponin, maté)

INTRODUCTION

The genus *Ilex* (Aquifoliaceae) consists of over 400 species, which grow as trees or shrubs. Major centres of distribution are Central and South America and Asia.

In Brazil and Paraguay, *Ilex paraguariensis* is cultivated for the preparation of a mild stimulant beverage (called maté) made by infusion of the dried leaves. However, several indigenous *Ilex* species have been reported as adulteration or substitutes for the genuine maté product. More particularly, *I. argentina*, a species from the subtropical subandean rainforest of Northwestern Argentina and Eastern Bolivia that shows several morphological similarities with *I. Paraguariensis* has been recommended for the maté production [1]. The geographic gap between these two plants incited us to start our South American *ilex* phytochemical program by the study of the saponin content of these two species. As a preliminary result, we herein present the structure of five saponins isolated from *I. paraguariensis*.

EXPERIMENTAL

The dried leaves of *I. paraguariensis* (200g) were extracted with EtOH-H₂O (4:6). The gum obtained

after evaporation of the solvent was dissolved in $\rm H_2O$ and successively extracted with CHCl₃, EtOAc and *n*-BuOH. The *n*-BuOH fraction was washed with 1% NaOH solution and the residue obtained after evaporation on the *n*-BuOH was repeatedly chromatographed over Si gel (CHCl₃-EtOH-H₂O, 8: 4: 0.5) to give matesaponins (1 - 5).

RESULT S AND DISCUSSION

The structure of the five saponins was established from the native derivatives or from their peracetylated counterparts using a combination of mass and NMR spectroscopy techniques [2-4]. The aglycone of the five saponins was shown to be ursolic acid from ¹³C NMR data. The structure of the sugar side chain was deduced using COSY, HOHAHA and ¹³C
H correlation spectra (¹J and ³J). Complete ¹³C NMR data of matesaponins 1 -5 are listed in Table 1.

Other minor saponins have also been isolated from *I. paraguariensis*, their aglycone has already been identified as ursolic and oleanolic acid. Their complete structure elucidation will be reported in due time.

Table 1 13 C NMR spectral data (δ , ppm) of 1-5, (75 MHz)

	1*	2§	3	4*	5#
			38.8	39.2	39.5
C-T	38.8.	40.2	26.1	26.3	27.1
C-2	26.5	27.1	90.0	87.8	89.2
C-3	88.6	90.5	39.1	39.5	39.9
C-4	39.4		55.8	55.7	56.8
C-5	55.7	57.0 19.3	18.4	18.2	19.1
C-6	18.3		33.2	32.7	34.0
C-7	32.9	33.5	39.7	39.7	39.9
C-8	39.9	40.2 48.4	48.3	47.7	48.7
C-9	47.9	37.8	36.9	36.7	37.6
C-10	36.8	24.1	24.3	23.0	24.2
C-11	16.8	127,1	126.1	125.7	128.5
C-12	125.9	139.0	137.0	137.7	139.0
C-13	138.3	43.0	42.3	.42.1	43.0
C-14	42.3	29.3	26.1	28.4	29.1
C-15	28.5	24.1	23.5	24.3	25.0
C-16	24.5	48.4	47.8	48.0	48.8
C-17	48.2	54.0	52.8	52.8	53.8
C-18	53.1	40.1	39.3	38.7	40.0
C-19	39.1	40.1	39.1	38.9	39.9
C-20	38.9	31.6	30.8	30.4	31.4
C-21	30.5	37.6	36.2	38.9	37.3
C-22	36.7	28.6	28.0	27.7	28.5
C-23	28.0	16.3	16.6	17.1	16.3
C-24	15.6	14.2	15.7	15.5	17.3
C-25	15.6		17.2	16.6	17.8
C-26	17.5	17.7	23.4	23.3	23.8
C-27	23.5	177.8	175.2	175.9	177.2
C-28	176.1		17.4	16.7	17.7
C-29	23.6	17.7	21.3	20.9	21.6
C-30	21.1		95.3	95.4	
glcl-1 95.5	95.6	91.5	74.6	74.1	
glcl-2 73.9	75.2	70.3 72.1	77.6	77.6	
glcI-3 78.7	77.8		70.6	71.2 ^c	
glcI-4 71.0	71.0	68.5	· · · · · · · · · · · · · · · · · · ·	77.6	
glcI-5 78.9	77.8	71.3	78.3	69.4	
glcI-6 62.1	62.3	67.9	69.1		
gicil-1		100.9	104.2	104.4 ^b	
		71.2	74.8	74.1	
glcII-2		72.9	77.7	76.1	
glcll-3		69.1	71.0	76.2	
glcII-4		72.9	77.8	77.6	
glcII-5		62.1	62.2	61.5 ^a	
glcII-6				104.2 ^b	
glcIII-I					ļ
glcIII-2		,		74.1	
glcIII-3				77.6	
glcIII-4				70.6 ^c ;	
			 	. 77.6	
glcIII-5				62.0 ^a	
glcIII-6		1007	104.3	104.2 ^b	
glcIV-1 106.0	101.8	100.6	l	74.6	
glcIV-2 75.5	75.2	70.1	74.3	77.6	-
glcIV-3 78.1	77.8	72.1	. 78.1		
glcIV-4 71.4	71.4	68.4	71.1	71.2 ^c	
	77.8	71.6	77.8	77.6	
glcIV-5 78.4	62.6	61.7	62.1	62.1 ^a	
glcIV-6 62.5			103.7	104.8	105.1
ara-l	107.2	105.2	78.1	73.5	
ara-2 71.7	77.8	73.1	81.7	80.8	
ara-3 83.9	83.8	76.9	67.8	68.2	
ara-4 69.1	69.4	73.1	64.4	64.9	
ara-5 66.7	66.6	64.3	101.5	101.6	+
rha-1	104.6		72.0	71.4	1
rha-2	72.0		72.1	73.5	
rha-3	72.0		73.5	74.6	
rha-4	73.7		69.6	69.8	
rha-5	70.5		18.2	18.2	
rha-6	17.1	1 -	10.4	10.2	

a, b, c attributions with the same index are interchangeable. Spectrum recorded in C_5D_5N ., § Spectrum recorded in CD_3OD , ¶ Peracetylated matesaponin 3, spectrum recorded in CD_3OD/C_2D_6SO .

1: R = β-D-glucose-(1Φ3)-α-L-arabinose; R' = β-D-glucose. [R = glcIV-(1Φ3)-ara; R' = glcI].

2: R = β-D-glucose-(1Φ3)-[α-L-rhamnose-(1Φ2)]-α-L-arabinose; R' = β-D-glucose. [R = GlcIV-(1Φ3)-[rha-(1Φ2)]-ara; R' = glcI].

3: R =β-D-glucose-(1Φ3)-α-L-arabinose; R' = β-D-glucose-(1Φ6)-β-D-glucose. [R = glcIV-(1Φ3)-ara; R' = glcII-(1Φ2)-α-L-arabinose; R' = β-D-glucose-(1Φ3)-α-L-arabinose; R' = β-D-glucose-(1Φ3)-α-

3: R = β-D-glucose-(1Φ3)-α-L-arabinose; R = β-D-glucose-(1Φ0)-ρ-D-glucose. [R = glcIV-(1Φ3)-αια, R = glcIV-(1Φ3)-[α-L-rhamnose-(1Φ2)]-α-L-arabinose; R' = β-D-glucose-(1Φ6)-β-D-glucose. [R = glcIV-(1Φ3)-[rha-(1Φ2)]-ara; R' = glcII-(1Φ6)-glcI].

5: R = β-D-glucose-(1Φ3)-[α-L-rhamnose-(1Φ2)]-α-L-arabinose; R' = β-D-glucose-(1Φ4)-β-D-glucose-(1Φ6)-β-D-glucose. [R = glcIV-(1Φ3)-[rha-(1Φ2)]-ara; R' = glcIII-(1Φ4)-glcII-(1Φ6)-glcI]

Acknowledgement We thank A.T.C. Taketa for the purification of the saponins and CAPES, CNRS and COFECUB (Brazil) for financial support.

REFERENCES

- Barral, G., Poggio, L. and Giberti, G.C. (1995) *Bol. Soc. Argent. Bot.* **30**: 243.
- 2 Gosmann, G., Schenkel, E.P. and Seligmann, O. (1989) J. Nat. Prod. 52: 1367.
- Gosmann, G., Guillaume, D., Taketa, A.T.C. and E.P. Schenkel (1995) J. Nat. Prod. 58: 438.
- Kraemer, K.H., Taketa, A.T.C., Schenkel, E.P., Gosmann, G. and Guillaume, D. (1995) Phytochemistry accepted for publication.