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dian of Deviance - an alternative to 'Maximum Likelihood
ion in Generalised Linear Models. Application to linear
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An alternative method of parameter estimation in Generalised Linear Models in the presence of
rvations is discussed. The method, Least Median of Deviance, is an extension of the exact
n of squares for the linear regression model. A numerical example with application to logistic

is presented.

Satu kaedah alternatif penganggar parameter di Model Linear Teritlak apabila wujud titik-titik
dibincangkan. Kaedah Median Deviaus (sisihan) Terkecil adalah lanjutan daripada kaedah
Kuasadua Terkecil bagi model linear regressi. Satu contoh berangka dengan penggunaan kepada
logistik dibentangkan.

ction . not robust in that it is subject to influence by
outliers. In order to provide some protection

this paper, we examine the robust against small subsets of outlying observations,
tion of B in generalised linear models analysts have made important extensions of the
s) [1] when the conditional density of YIX diagnostic as well as robust regression

approaches in both linear and non-linear models.

yif; — b(6;) , The proposed robust technique studied here

T ———"+e(yis@) ¢ -~ is an extension of the Least Median of Squares

¢ [2,3] in GLMs, called the Least; Median of

Deviance (LMD). The LMD estimate is a

minimax estimate which minimises the gth

e b and ¢ are known function and B is ordered deviance for a given data set where g =

ted to 0; via the relationship [(n—p-1)2]+ (p+1)and p is the number of
unknown parameters to be estimated.

(v:|zs) = exp

E(y) = p(8)
- On the theory of minimax (LMD) estimation
g() = aip =, for GLMs

e g is a differentiable function known as a The minimax estimation for GLMs problem
is to find Bj to minimize the maximum dp(B)
where d; denotes the ith deviance of observation
The most commonly used method in y; from the fitted model and [f] denotes the
imating the unknown parameter B is the integer value of z.

ximum likelihood estimation (MLE) in which

tr maximises over B, the sum of individual

-likelihood functions. However, the MLE is
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Suppose n = p + 1. Theorem 1 shows that ~

the minimax solution is the exact solution whef
dP), (i=1,2, .., p+ 1)areall equal.

Theoreml. Suppose that g and b’ are both
strictly monotone. Suppose that 5 € R’ and that
rank (X) = p.

" Define
4;(8) = 2{b(8) — y;8 — b(d;) +v;6;)
where

6; =0;(8) = ¥ g (] B))

and G is the mle based in the jth observation
alone. Then

(i) there ezists  such that di(6i), dx(8y), ...,
dps1(Gp+)) are all equal,

(ii) the value of B that minimises maxg<prdi(G)
is such that

di(60) = do(6) = ... = dprs(Ops1)

The proof of the existence of the minimax LMD
estimate can be found in [4].

Remarks. The least median of deviance estimate
(LMD) is a special case of a more general

estimate called the least quantile of deviance.

estimate (LQD). In the case of a normal linear
regression, the LMD is LMS which is a specidl
case of the least quantile of squares (LQS) 31
Because an LQD estimate minimizes the kth
smallest (k > p) deviance residual for a given
data set, it must minimize the maximum
deviance for some k element subset of the data.
Thus the kth LQD estimate must be the minimax
deviance fit to that k element subset. In principle,
all LQD estimates in any model can be
calculated by exhaustively searching over
subsets of the data of a given size and computing
- the minimax solution for each subset.
Unfortunately, as the number of sample sizes n
and the number of parameters p increases, the
computation involved are often infeasible
because of the large number of subsets that
would have to be considered. In practice, only
some percentage of all possible subsets (chosen
at random) will be looked at if C";., is large.

A numerical example
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We will consider a numerical example to
illustrate the need for a robust alternative to the
MLE criterion. A complete analysis of the data
set is outside the scope of this section as the
purpose of this study being to contrast MLE
approach with the proposed LMD method of
estimation.

A multiple logistic regression example: Vaso
constriction of the skin. The data in Table 1,
given by Finney (1947, p. 322) consist of 39
binary responses (y) denoting the presence (1) or
absence (0) of vaso-constriction of the skin of
the digits after inspiration of a volume of air V at
the inspiration rate R. A dose-response
relationship between the explanatory variables
and the dichotomous outcome is the basis for the
proposed model.

Table 1. Listing of Finney’s data on vaso
constriction in the skin of the digits. The binary
response y indicates the occurence (1) or

“nonocccurence (0) of vaso constriction

Volume RateResponse Volume RateResponse

3.7 0.825 1 1.8 1.8 1
3.5 1.09 1 0.4 2.0 0
1.25 2.5 1 0.95 1.36 0
0.75 1.5 1 1.35 1.35 0
0.8 3.2 1 1.5 1.36 0
0.7 35 1 1.6 1.78 1
0.6 0.75 0 0.6 1.5 0
1.1 1.7 0 1.8 1.5 1
0.9 075 0, 095 19 0
0.9 0.45. 0 1.9 0.95 1
0.8 0.57 0 1.6 0.4 0
0.55 2.75 0 2.7 0.75 1
0.6 3.0 0 235 0.03 0
1.4 2.33 1 1.1 1.83 0
0.75 3.75. 1 1.1 22 1
2.3 1.64 1 1.2 2.0 1
32 1.6 1 0.8 333 1
0.85 1.415 1 0.95 1.9 0
1.7 1.06 0 0.75 1.9 0
1.3 1.625 1
Concluding remarks
The data obtained were repeated

measurement on three individual subjects, the
numbers of observation per subject being 9, 8
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nd 22, Finney found no evidence of intersub-
ect variability and was satisfied to treat the data
s 39 independent observations. The model
nder consideration regards the binary outcome y
s a Bernoulli variable with parameter &t where =
related to the volume and rate of air inspired
ia the relationship

logit(m) log{n/(1 - m)
Pot PilogV + PrlogR.
)

"Assuming that the model is correctly specified,
the MLE fit to this data set yields

logif(n) = -2.863 +4.538logl + 5.122logR
3)

By using the diagnostic case deletion, Pregibon
{5] showed that observations 4 and 18
individually have an enormous effect on the
estimated coefficients.

The proposed approximate LMD fit to this
data gives

logit(r) = -34.506 + 47.001 logV + 42.839l0gR
Cy

The estimates obtained by the approximate LMD
(with-m = 3500 subsamples) are clearly very
different from the MLE. This drastic change is
due to the fact that the negative responses are
very nearly separated from the positive responses
by a straight line in the logV, logR plane [6]. The
4th and 18th observations contributes the most in
(3) i.e the rise of the logistic surface.

The minimax LMD fit does reveal that
observations 4 and 18 are clearly inconsistent
with the majority of the observations and this is
captured in the residual plot of Figure 2(b). The
approximate LMD seems to fit the majority of
ihe data well. Notice that observations 29,31 and
39 are also quite distant from most of the
observations.

We note that because the coefficient
estimates of logl and log R in [5] are similar,
this may suggest the possibility of considering
RV as a variable.
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Conchiding remarks

The LMD is the analogue of the LMS in the
normal linear regression model, which minimises
the maximum deviance of the ‘half samples’.
Even though this method has a high breakdown
point (which will be discussed elsewhere) in
many cases, the difficulty of the LMD is that, in
general, it is computationally expensive. More
work will be required to improve the algorithm
involved.
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Figure 1. Scatter plot of the vaso constriction of
the skin,
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Figure 2. Residual plot from LMD fit of the
- . vaso constriction of the skin.

. Appendix

. . On the proof of Theorem 1.

* . ' (5) ‘The function d;(8) > 0 attaios its minimum d;(f) =0 st =4; .
Now
i =¥(8) =97 xB). ®

. For fixed 8;,... 6y, let 8 be the solution of

- R
Vaza conatriction of the shin: Residual plot from MLE fit.

4 =¥y dB) and o = g(¥(8)
Then, if the jth row of X is x}', i=loap

Xf=c

)

and, since rank (X)=p , {6) hns a unique solution,
. . Now choose d >0 and put di(0f") =d, j=1,...,p |
Since d;{#;) —r 00 as 8; — koo, sucha 0}0 .always exists, \
Put c‘(,-" = g(b’('f,‘))), j=1,...,p and define
= j=1,....p. 4]
i . Then f4 ia the unique solution of X4 = ¢(¥),
' Now let
. . =8 and 6 =0 ).
Then either
Gua () <d or ulB)>d o () =d. ®

: . Case I: Suppose dpya(67,) < d.

Then reduce d until d,“(ow,) =d . To sae that this is poesible, note that
dps1(85y) 1 continuous in d and that choosing d=10 gives

ei=glyih i=1,...,p and d;j=0, j=1,...,p

However,

: (8D = dalt o (xEu)
" B * >0

-.! since dyyy has a unique minimum at 5,.“ = V'l(y,.u) and the minimum is
0.

. o Case II: Suppose d,g.x(ﬂg’l)é-d;-

i T " Thia ia a speclal case of the general situation where dy,...,dy4; are not all
! . equal. | B
. . Since & and g arestrictly monotone, dj4) does not attain its minimum unless
= ' . Gl = 9l )
) - e Since dyys(04,) > 0', this Is not the case for Ba.

Aot 1

B defines & hypsrplane in (p-+1) di | space. The hyperplane ia

. with probability 0, Hence there is a direction in which # can move which will be
Vaso comatriction of the skia: Reridual plet from MLE 1. the direction of reducing d,4; . Choose the steapest such direction and move §
until dyy) =d; forsome j<p.

T Now move § in the steepest direction for which fi,“ = d; and the common
value is reduced until a third deviance d; satisfies dy = d; = dypy.

- Continue this process until dj = dpyy for A!lbhnt one of the dj, j=1,...,p.
This case then reduces to case 1.

(if) Supposs that the value of § which minimizes mazjay,.. pp1d;(;) is such that
- dpit(Op1) > d5{8;), J = 1,...,p. Then, applying the procedure in (II) will
] alwayn reduce the maximum deviance.

iz
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