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Abstract. The accuracy of the Krieger-Maron, power law and Yang-Krieger equations for calculating the
shear rate of three specific Herschel-Bulkley fluids (1 = Ty + KY") in couette flow within the annulus of a
concentric cylinder was assessed. The chosen fluids have a shear rate exponent n of 1, 1/2 and 1/3. The
accuracy for all three equations was found to depend upon the fluid model, stress level and radius or gap ratio ¢
of the concentric cylinders. With the Krieger-Maron equation, the shear rate is only accurate in the fully sheared
regime for all nand e. In contrast both the power law and Yang-Krieger equations are accurate in both the plug
and fully sheared flow regimes. For both equations, the largest absolute error generally decreases with
increasing € and decreasing  and is usually located near the transition from plug to fully sheared flow. In terms
of the largest absolute error, the Yang-Krieger is more accurate.

Abstrak. Kejituan persamaan-persamaan Krieger-Maron, hukum kuasa dan Yang-Krieger untuk mengirakan
kadar ricih bagi tiga bendalir spesifik Herschel-Bulkley (t = t, + KY") dalam aliran ‘couette’ di dalam anulus
silinder konsentrik telah dinilaikan. Bendalir-bendalir yang terpilih mempunyai eksponen model bendalir, 7, 1,
1/2 dan 1/3. Kejituan ketiga persamaan itu bergantung kepada model bendalir, aras tegasan dan nilai nisbah
luang atau jejari silinder konsentrik, e. Bagi persamaan Krieger-Maron, terdapat kiraan kadar ricih yang hanya
tepat dalam regim aliran ricih sepenuhnya untuk semua nilai » dan €. Secara bandingan, terdapat persamaan-
persamaan hukum kuasa dan Yang-Krieger yang tepat dalam kedua regim aliran, penyumbat dan ricih
sepenuhnya. Bagi kedua persamaan ini terdapat nilai maksima ralat mutlak secara amnya berkurang apabila
nilai € bertambah dan apabila » berkurang, dan nilai maksima ini biasanya berlaku didalam peralihan antara
aliran penymbat dan ricih sepenuhnya. Dari segi nilai maksima ralat mutlak, persamaan Yang-Krieger adalah
lebih tetap berbanding dengan persamaan hukum biasa.

Introduction be estimated using one of a number. of equations.
Most of these equations were attributed to Krieger
Industrial suspensions such as coal slurries, and co-workers [4-8]. Before these equations can
food hydrocolloids, paints and toothpastes be used their accuracy must be assessed with
typically display non-Newtonian flow model fluids. Here, the accuracy of three shear-rate
characteristics and often with a yield stress. Their equations was assessed with three specific HB
flow characteristics are best described by the three- models in couette cylinder flow.
parameter Herschel-Bulkley model

. The Herschel-Bulkley equation is given by:
(r=7,+Ky") which incorporates an

additional variable shear rate exponent, 2, that is 1

not found in the classical Bingham model. The n
Herschel-Bulkley (HB) model has been used ’ [ Ty
successfully to describe the flow behaviour of Y = f (T) et I —
flocculated dispersions [1-3]. The flow behaviour K

is often characterised using a concentric' cylinder

viscometer. The true shear rate however can only (1)
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where Ty, K and 7 the yield stress, consistency = 203_;[1_ gC,(&)+[3(§)z - g)cz(ap 3(5)163(6))
_ _ (1_ Iy s s/ s N
index and shear rate exponent. In this study 72 of
1, 1/2 and 1/3 were chosen. This range of N )
would normally cover the entire range of flow where
behaviour exhibited by most yield stress fluids {3].
When A is 1, it is a Bingham fluid. 2
\ d=—Ing,
The three shear rate equations assessed were: S
1) the Power law [6]: 0 -2
. (6 Ci(6)=S(&-1) (3828 +6+2).
. 208" 5 s s e gn s
Y= Cz(5):—6“(e J1)°(3e7-8¢-46¢°-6-3)>
(1-s%)

J
C3(5)=%(eﬁ-j)'l(é‘em-‘lem‘*115e25-]2e25+123d+115e6+5+-l)

@

b

where

wmd S=dlnz/dinQ, S =dS/dinQ
Q) the rotational speed,

& the radius ratio of the outer to the inner and S = dS /dIn€Q. y becomes ¥ for shear

cylinder, rate at the inner bob where 7jis measured. The
) Yang-Krieger [8] equation is a truncated form of
2) the Krieger-Maron [S]: the Euler-MacLaurin solution expressed as a series
of summable subseries [6,7]. The leading term is

the power law expression given by equation (2).

2 !
2Q (bo )+ (é _ 1) B(e)+ ((% _ 1) - %} bz(g)] Theory and methodology

7 = (1—5‘2)

3 . For a fluid sheared in the annulus of a
* where concentric cylinder, the shear rate }/ is implicitly
given by:
2
g-1) 1 1 lng
bo(8)=( 2) St ),
g 2 2lne 6

(£, 2 | _ 1 eodr
bl(g) 282 (+3n8)’ Q 2 - 7/ I b

(£ ®
bi(g)=——"Ing,
6 &

where T, is the shear stress at the outer cylinder.

Equation (5) can only be solved exactly for }/ ,

and from the measured € and T data, if the fluid
. model is known apriori. Hence, this equation is of
3.) the Yang-Krieger [8]: little use as the rheological behaviour of most

materials is usually unknown. Note that numerical
techniques with curve fitting, smoothing and other
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capabilities had been used to solve equation (5) for
relatively simple fluids [9-11].

There are two flow regimes, plug and fully
sheared flow, for a yield stress fluid sheared in the
annular of a concentric cylinder. For an inner
rotating cylinder, plug flow occurs when

< 7,< T}, only that part of the fluid adjacent to

the rotating cylinder experiences shear flow. The
plug flow boundary conditions for equation (5) are

Tl = Tl and 2'2: z;;

The computation of Y, using equations (2)-

°(4) requires the determination of S ,S and

S ateach 7, from the logarithmic plot of 7}
versus 2 or alternatively from an analytical {2 -

T, relationship which can be obtained by
integrating equation (5) with a HB fluid model. All

relationships between {2 and 7j for both plug

and fully sheared flow for the three HB fluids are
tabulated in Table 1. Further manipulation is

required to obtain the values for S , S and S

from €2-7; equations and the mathematics
involved are listed in Appendix A.

Results and discussion

The accuracy of the Krieger-Maron, power
law and Yang-Krieger equations (respectively
given by equations (2), (3) and (4)) was
determined by comparing the calculated shear rate
with the exact value obtained for the HB model.
Their difference - is expressed in terms of a
percentage error €% which is given by:

e% =210 o 100

Vo

where ¥ and ¥, the model and calculated shear

rate. The percentage error was evaluated as a
function of a dimensionless shear stress, 11/(82ry).
One advantage for using Tl/(SZ‘Cy) is a well defined

flow regirfle. For instance when ‘tl/(szry) <1.0itis
plug flow. A further advantage is the -¢%
versusrl/(szTy) plot being insensitive to the

magnitude of Ty and K.

The shear rate error e% obtained using the
Krieger-Maron equation plotted as a function of
dimensionless shear stress, rl/(szry), for HB fluids
with exponent »n of 1, 1/2 and 1/3 is shown in
Figure 1. The radius or gap ratio £ evaluated
ranges from 1.05 to 1.5. In the plug flow regime,
the error increases exponentially with decreasing
rl/(azry) for all fluids and €. In the fully sheared
regime, the error rarely exceeds 1% for all fluids
and &.
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Figure 1. The percentage shear rate error versus
dimensionless shear stress obtained using “the
Krieger-Maron equation for Herschel Buckley
fluids with shear rate exponent of a)n =1, b) n =
1/2 and ¢) n = 1/3 and for a range of gap ratio €.

The Krieger-Maron equation is useful
provided that plug flow can be avoided. This can
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be achieved by using a small gap viscometer as
plug flow only occurs within a narrow 11/(821y)
range at small &. However such a viscometer is not
suitable for suspensions especially when the
particle size is comparable with the gap width.

A similar plot of shear rate error versus
_ 11/(82'cy) obtained for the power law equation is
shown in Figure 2. The power law exponent S
was determined at each point on the T versus
Q curve.
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Figure 2.  The shear rate error  versus

dimensionless shear stress obtained using the
power law expression for Herschel Buckley

" fluids with shear rate exponent of ayn=1,b) n =
1/2 and ¢) n = 1/3 and for a range of €.

A number of interesting features common to
all three fluids were observed. The error is always
positive. There is distinct maximum error located
in the neighbourhood of the transition from plug to
fully sheared flow. This maximum generally
decreases with increasing. radius ratio.  For
example, when & was increased from 1.05 to 1.5,

94

" thie maximum decreased from 16% to 12% for n of

# 1, 6% to 3% for n of 1/2 and 3.5% to 0% for n of
1/3. The maximum also decreases with decreasing
n. For example, it is 16% for n of 1.0, 6% for n of
1/2 and 3.5% for n of 1/3 at € of 1.05. It is clear
that the error in the plug flow regime is much
smaller than that obtained using the Krieger-Maron
equation.:

Darby [12] has assessed the accuracy of the
power law equation for the Bingham and Casson

@2 =+ Cj/ 12) fluids and reported a

maximum error of 14% and 6% for € of 1.1. A
similar maximum of 14% for Bingham fluid for €
of 1.141 was obtained here. For » of 1/2, the HB
fluid with the same exponent as the Casson, a
similar maximum error of 6% was also obtained
for € of 1.141. This result suggests that the
magnitude of the error is solely determined by the
shear rate exponent.
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Figure 3. The shear rate error versus

dimensionless shear stress obtained using the
Yang-Krieger expression for Herschel Buckley
fluids with shear rate exponent of a)n=1,b)n =
1/2 and ¢) n=1/3 and for a range of €.’
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The results for the Yang-Krieger equation are
shown in Figures 3. The results show an
oscillating €% about the 0% baseline. The largest
absolute €% is located near the flow transition.
This largest % generally increases with increasing
N for a given €. It is also small. For example it is
less than 2% for » of 1/2 and 1/3 at & of between
1.05 and 1.5. However, it is 8% for #n of 1.0 at ¢ of
1.141 and decreases 5% at € of 1.5. The error is
also relatively small in the plug flow regime.

Figure 4 shows the plot of €% versus 11/(82‘ty)
for all three fluids at a fixed € of 1.141 where the
Newtonian expression is used to specify the shear
rate. The power law becomes the Newtonian
expression when S is 1.0. The errors are clearly
large. Hence, caution is required when using any
commercial concentric cylinder viscometer which
usually quote shear rate factors based on the
Newtonian or narrow gap assumption. Note that
the gap ratio of 1.05 and 1.141 are used in our
laboratory.
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Figure 4. The shear rate error  versus
dimensionless shear stress obtained using the
Newtonian expression for the three Herschel
Buckley fluids and forg=1.141.-

The well-known Krieger-Maron equation is
flow regime dependent. It cannot be used in the
plug flow regime. For it to be useful, the yield
stress needs to be determined independently so as
to establish the flow regime [13]. In contrast both
the power law and the Yang-Krieger equations can
be used in both flow regimes. As a note of caution,
the Yang-Krieger equation can be subjected to
large error for real fluids. This is because the
higher order differentiation of the experimental

datato get S and S can be highly inaccurate.
In contrast the power law requires only the first

order ‘derivative .S . If a maximum error of 10 to
15% is acceptable then the power law equation
should be used for real fluids. Furthermore the
maximum error can be further reduced to less than
10% by using a large gap, € > 1.5.

The most accurate equation for calculating the
shear rate of Herschel-Bulkley fluids in terms of
the absolute value of the largest error and the
absence of flow regime dependence is the Yang-
Krieger. However this equation requires higher
order differentiation of the experimental data.
Although the power law equation is less accurate
but it requires only the first order derivative. The
use of a large gap viscometer can reduce the error
considerably for both equations. The Krieger-
Maron equation is extremely accurate in the fully
sheared regime but suffers from large inaccuracy
in the plug flow regime.
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Table 1. Q-1, relationships for plug and fully sheared flow obtained for the three Herschel-Bulkley fluids.

#

f:ryﬂ—Kj/

1 T
Plugflow: Q=—| 7 -7.+7 In-2

1 ) ]
Fully sheared flow: {2 = E(Tl(] -g?)+ Tylngz)

/

r=ry+K7}

1 Tf 71 3 2
Plug flow; QQ = (—-27 1-1+1-21n——+—z-
‘ 2K2 2 y Y Ty 2 Y

' 1 (72 B _ )
.Ful%yshearedﬂow: Q= 2K (71(1—8 4)—2’[12‘},(1—8 2)+Ty lnazj

/s

=7,+Ky
I {7 3 1z
g o :zTe(?"Wf”fﬁﬂ'fi(z"“;ﬂ)

1 (4 3
Fully sheared flow: Q = 70 (%(] -£9)- Efyflz(] - )30 n(1-67)- T;lngzj
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S dlnz, Qdr,

|

]

| !

Appendix A. Mathematical relationship for obtaining S,S' and S" fromi the Q-1, relationship. i
|

i

CdInQ 7, dQ
¢ d’Int,  Q’(d%, 1dr, l(dil)z
= = — +—— ] —
dinQ®  7,\dQ* QdQ 7 \dQ
where
d’r, _ 1 a’Q

A (dQ/de)) dr)

o d’lnt, o 1 dr, 3Q(drl)2 20’ (drl)3 3Q(d211) 30 dr, d*r, | Q° [d311)
= —Q —=1_ =L + +== - +=
dlnQ’ 7, dQ  72\dQ 7 \dQ) 7 \d?) 2 dQ dQ* ) ¢, \dQ?)

where

3 2) 2 ' 3
d’r,  dr, -3 (de+ 1 dQ

a2’ dQ\(da/de,) \d?) " (dQ/dr,) dr]




