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ABSTRACT This paper reviews the implementation of a general-
ized vertical coordinate system leading to a ¢ vertical coordinate
system for the ocean. The theoretical framework, of a new tech-
nique that splits the barotropic and baroclinic modes is discussed.

ABSTRAK Kertas ini mengulas penggunaan sistem koordinat
menegak umum yang menjurus kepada sistem koordinat menegak
¢ untuk lautan. Satu teknik baru yang mengasingkan mod baro-
tropik dan baroklinik dibincangkan secara teoritikal.

INTRODUCTION

The external mode of the wind-driven ocean circula-
tion of the South China Sea has been modeled; as an
extension to-this study [1], the theoretical framework
of a new method that combines both the internal and
the external modes is described.

The first part of this,report describes the equations
that govern the ocean general circulation in the (x,y,z)
coordinate system. This cootdinate system is then trans-
formed to the generalized coordinate system (X,y,s),
where s is the new generalized coordinate [2]. Because
of the fact that the same number of layers is needed in
coastal areas as well as in deep ones, a stretching verti-
cal coordinate is implemented. This study, introduces a
o vertical coordinate so that the set of equations can be
transformed into the (x,y,0) coordinate system [3,4].

The mode splitting technique is also described [4,5].
This method is effective in the interaction of both the
external and internal modes.

MODEL EQUATIONS

Wind-driven ocean circulation is fairly well described
by both the hydrodynamic laws of conservation of mass
and momentum. The thermodynamic and the salinity
equations, as well as the equation of state are needed
to describe the thermohaline circulation. This set of six
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equations form the basic equations that govern most
ocean circulation models.

A. Basic equations
The model equations, in the X, y and z coordinate sys-
tem are:

1) The horizontal momentum equation

dV/dt+fKxV =-p~'Vp+F+V.(A,VV)+0[A,0V/3z]/0z
' ey

where

v v ]
( )/79x1+9( )/dyl,

=3( )/at+V.V( )+wa( )/3z,

()
d()7d

I, J and K (u, v, and w), represent the unit vectors (ve-
locity components) in the X, y, and z directions, respec-
tively; F, the body force; f, the Coriolis parameter; t,
the time; p, the density; p, the pressure; A, (A), the
horizontal (vertical) kinematic turbulent eddy viscosi-
ty coefficient, and the symbol x (.) the vectorial (sca-
lar) product.

2) The vertical equation of motion

Because of the large-scale flow approximation that has
been implemented, the vertical equation of motion may
be expressed by the hydrostatic approximation:

dp/dz=—pg (2)
where g, represents the earth’ s gravity.
3) The continuity equation

op/3t+V.(pV)+9(pw)/9z=0 3

4) The heat temperature equation
This thermodynamic equation, derived from the first




law of thermodynamics, yields

oT/2t=kV’T+Q/C, 4)
where T, represents the temperature; K, the kinematic
thermal diffusivity coefficient; V> T, the Laplacian of
temperature; Cp, the coefficient of specific heat at con-
stant pressure; Q, the adiabatic heating.

5) The salinity equation

dS/dt=v(S), (5)
where S represents.salinity and ¥ ( S ) is a function of
salinity.

6) The equation of state for the ocean

p=p (TS) ©6)

B. Boundary Conditions

1) At the free surface

The acting body forces representing the top boundary

condition at the free surface are
pD(aV/3z)=T" @)

where I'V represénts the wind stress vector. On the oth-

er hand, the kinematic condition states that

w =dn/dt+udn/9ox + von/dy (3)

where 1 represents the free surface elevation.

2) At the lower boundary
The bottom friction dissipation is parameterized by the
relation ‘

pD(dV/0z)=T, 9

where I, , represents the bottom friction stress; D [=
H(x,y) + 1 (x,,t)], the total depth of the water column;
and H(x,y), the mean depth of the water column.

The vertical velocity at the bottom is parameterized
by

w = —(u,8H/3x +v,0H/dy) (10)
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where (u,, v, ) is the bottom friction velocity associated
with bottom frictional stress I',,

If the terms F, Q, and 7y ( S) are functions of the
dependent variables V, w, p and p, the system of
Egs. (1) - (6), in addition to the boundary conditions,
constitutes what is known as a closed system of equa-
tions. The system of Egs. (1) - (6) are the model equa-
tions most commonly used in ocean circulation mod-
els.

In most cases, the evolution of the water mass flux
is accurately predicted by the time integration of the
model equations above stated. In most problems in phys-
jcal oceanography, models are set to start from rest; ie.,
u =v =1 = 0. Owing to the fact that the equations are
non-linear, an analytical solution is difficult to obtain.

GENERALIZED COORDINATE SYSTEM (S)

The oceanic vertical structure may be represented us-
ing different vertical coordinate systems. The vertical
coordinate systems may be classified as either Eulerian
(z or o) or Langrangian (p). In the former case, the ve-
locity (speed and direction) of the fluid particle at eve-
ry point in the fluid at every instant of time, is described.
In the latter case, the trajectories followed by each flu-
id particle, when each particle reaches each point in its
path, is described.
The transformation of the vertical coordinate z to
the generalized vertical coordinate s is given by
s = 8(X,Y,2,t) (11)
Any scalar function, A, may be a function of in terms
of z or s, depending on the particular choice of the ver-
tical coordinate system been implemented. The partial
derivative of A with respect to ¢ (where ¢ may repre-
sent either x, y, or t), yields

(9A/3c), =(9A /dc), +(3A /9z)(9z/dc), (12)

where the subscript represents the vertical coordinate
system that remains constant during the partial differ-
entiation. In using the relation

A /9z = (9s/9z)(0A /3s) (13)




Eq. (12) yields

(9A/3c), =(9A /dc), +(dA /3s)(3s /3z)(9z/3c), (14)
For ¢ =, it follows that

(3A/3t), =(0A /3t), +(0A /3s)(ds/9z)(dz/at), (15)
If, on the other hand, c = X,y

V,A=V,A+Vz(0A/9s)(ds/9z) (16)
Taking into consideration the system of Egs. (11) - (16),

the total derivative, d( )/d t, in the generalized vertical
coordinate system, s, is

d( )7dt=23( )/3t+V.V,( )+[w-(92/3x), - V,z)(@s/at){d( )/3s}

a7
The total derivative in the (x,y,s) system is
d( )7de={o( )/at} +V.V,( )+s(3( )/3s) (18)
where
s=dx/dt 19)

Upon comparison of Egs.(17) - (18), it follows that

s=d( )/dt=(0s/ 8z)[w - (9z/3t) - V. Vsz] (20) -

It also follows that the horizontal momentum equation
in the (x,y,s) system, without introducing the eddy vis-
cosity terms, is

dV/dt+fKxV=—p 'V p+p™(0s/9z)V,z(dp/0s)+ F  (21)

Therefore, in making use of the hydrostatic relation, it
follows that

dV/dt+fKxV =—p'V,p-gV,z+F (22)

The continuity equation in the (x,y,s) system, yields

aw /.= (3s 10z {a(22/3s) /at) + {(V/35) ¥ 2]+ [a é/as]
(23)

The velocity divergence, following (2.6) yields
V,.V=V_V-V, .z(0V/3s)(ds/dz) (24)

Upon substitution of Egs. (23) and (24) in ( 3), the con-
tinuity equation in the (x,y,s) system is

[3(pd2/35) /2] + V., {pV(32/3s)} +[a{(ps)(az/as)} /Bs] -0
(25)

In considering the hydrostatic equation in the (X,y,s)
system, it follows that

pdz/ds =—g'dp/ds (26)

The continuity equation may, then, be rewritten as

[a(p/at)/as)+ V. {v(ap/as)}+’[a{s(ap/as)}/as]=o
27

The transformation from the (x,y,z) into new (x,y,s)
coordinate system of both the salinity and the tempera-
ture equations is given by Eq. (18) in terms of the total
derivative in the new coordinate system. The deriva-
tion of these two equations is left to the reader.

VERTICAL COORDINATE SYSTEM (o).

A. Basic Equations

In order to have the same number of layers in coastal
areas as in deep waters, the vertical structure of the ocean
is usually represented using a stretching vertical coor-
dinate system. The stretching coordinate system most
commonly in oceanic modeling is ©. This coordinate
system is usually defined as

c = {z-n&y)}HEXY) +n&yt)]
= { Z-" (X,Y,t) }/ D (X9y’t) (28)
where H(x,y) represents the mean depth of the water
column, 1 (x,,t), the free surface elevation and D (x,y,t)

= [H(x,y) + M (x,y.t) ], the total depth of the water
column.




Given the above definition of ©, it is inferred that
the water column between z =1 and z = — H, ranges
between ¢ = 0 and 6 = — 1 in the new vertical system.

From the Egs. (13) and (14), the kinematic vertical

eddy (turbulent) viscosity term, 0[A,0V/9z]/9z, in the
(x,y,0) system, may be expressed as

(95/32){3[A, (30 /32)(3u/30))/ 0}
= D73{A,(0u/d0)/3c}
(29)

From Eq. (16), the pressure gradient, yields
V.p=V,p — D[V ,n+0V,D|(0p/30) (30)

Following (26), the hydrostatic equation in the (x,y,G)
system is

(9p/30)(30/32)=—pg 31)

The vertical integration of (31) yields

j:[ap/ dc]do = —J:pngc (32)

Therefore ":‘"»,,_J
p(c)= [ pgDdo (33)
Application of the gradient V_to p D, ensues that
V,(pD)=V,(Dp)+D™[V,h+6V,D]3(pD)/d0] (34)
The operator V_[ p (6) ] has the form
v,[0(0)]=2[ v, (pD)
=gp J’:VO (D)do + ngVd (p)do
+ gVo(D)j:c[a(p)/ao] do + (35)

gv, (n)I:[a(p)/ 90| do

The last term is smaller than both the third and the sec-

ond terms in *he RHS. Thus, it is negligible and it is not
been considered.
The multiplication of p~! and Eq. (35), yields

p"{V.[p(@)]} = &¥,(n) + (eD/p)V, [ () do +

[gP_qu(D)]_[:{d[a(p)/ ao]} do
(36)

This term represents the pressure gradient force in the
(x,y,0) system. The equations of motion in the (x,y,0)
system yield ‘
ou/dt + u [du/9x] + v[ou/dy] + ofdu/do] - fv

= -glon/ax] + F, -(gD/p){a/ax [fpdo]} +

[g p’ (BD/ax)] f:{c[a(p)/ac]}do + a[A,h(au/ax)]/ax +

3A, (dusdx)|/dy + D” 3{A, (du/dc)/dc}

(37a)
av/dt + u[av/dx] + v[ov/dy] + ofav/do] +
fu = -g[an/dy] + Fy-(gD/p){a/By [j:pdo]} +
[g p’ (E)D/ay)] I:{o [a(p)/ac]} do +
3[A, (av/ox)|/ax + [A, (dv/ax)]/dy +
D” 3{A, (3v/dc)/3c}
(37b)

The continuity equation in the (x,y,0) system yields
on/ot + d(Du)/3x + 9(Dv)/dy + a(nd)/ac =0 (38)

B. Boundary Conditions
The new vertical velocity, &, may be derived as fol-

lows:

w =o0z/dt + V. Voz + G 9z/90 _ (39



Since 9z/9c = D, it follows that

6D = w - (3z/3t + V. vq;) (40)
ie.,
oD = w - 3(oD +n)/3t - V. V_(oD + 1) (41)
From (8) and (10), the boundary conditions are
&(z=m) = 6(z=—H) = 0 42)

BAROTROPIC - BAROCLINIC TECHNIQUE

In coastal circulation modeling, it is useful to separate
the vertical integrated equations (external or barotrop-
ic) mode from the vertical structure equations (internal
or baroclinic) mode. The former mode contains the ex-
ternal fastest gravity waves whereas the latter contains
the slowly moving internal gravity waves.

This new method is known as the mode splitting
technique [3,4]. This technique divides the flow into its
barotropic and its baroclinic modes. Egs. (37) may then
be rewritten as ‘

u/dt - fv = -g[on/ax] + E

—(gD/p) {a/ ax [ij d 0]} + [gp'1 (eD/ ax)] f:{a[&(p)/ao]} dp |

(43)
av/dt + fu = -glon/dy] + G

—(gD/p) {a/ dy [I:p d 0]} + [gp'l (eD/ ay)] I:{c[a(p)/ao]} do
(44)
where

E = u[du/dx] + v[du/dy]+ o[ou/dc] + F,

~ 9[A, (3u/3x))/ax - A, (3u/dx)|/3y - D"3{A, (2u/d0)/3c)
(45)

G = +u[ov/dx] + v[av/ay] +o [av/do] + F, -

3[A,(av/3x)]/ay - 3[A,(3v/3y)]/ay - D*3{A (av/3c)/a0)
(46)
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Eqs. (43) and (44) are vertically averaged, in the fol-
lowing manner: - '

0

jD()do

1

[ ]= (17H) ]1( )dz = (D-]) 47

Therefore, any variable () may then be interpreted in
the following manner:
O=101+ (48)
As usual, it is assumed that 1 is at least two orders of
magnitude smaller than D. In doing so, we will have

3u]/at - f[v]= -gd[n)/ax + [E] (49)

3[v}/at + f[u]= -gd[n)/dy + [F] (50)
The continuity équation vertically averaged has the
form:

d[n}/ot + d[uD]/dx + 9[vD]/dy = 0 (51)
As an example, to illustrate further the methodology
been employed, the derivation of Eq. (51), is shown in
Appendix I. Upon subtraction of Egs. (49) and (50) from
Egs. (43) and (44) we will have

du/dt - fv’ = E - [E] (52)

ov/ot + fu' = F - [F] (53)

Eqgs. (52) and (53) are, therefore, independent of the
terms that govern the external gravity waves. We have
effectively separated the internal and the external
modes. Egs. (52), (53) with (38) govern the slow mov-
ing baroclinic waves and internal waves. Egs. (43),.
(44) and (51) govern the external gravity wave modes.

APPENDIX I

Derivation of Eq. (51)
Following (38) the continuity equation has the form




an/at + 3(Du)/dx + 3(Dv)/dy + 3(Do)/dc = 0 (A.l)
The vertical average of the first term of (A.1) is
0 0
(1/D)[D {on/at} do = (1/D) 8{ID n dc}/at =9[n]/at
-1 -1
(A2)
The integration of the second term yields
0 0
(1/D) j D {3(uD)/dx} dg = a{ju D do}/ax =9[uD}/dx
-1

-1

(A.3)
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The vertical integration of the third term of (A1) is
derived in the same fashion as (A.3). Due to the top and
bottom boundary conditions, the last term of (A.1) van-
ishes.
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