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On Bernoulli’s inequality

Kong-Ming Chong
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ABSTRACT In this paper, Bernoulli’s inequality and some of its
generalizations are shown to be simple consequences of a spectral
inequality.

ABSTRAK Dalam kertas ini, ketaksamaan Bernoulli dan beber-
apa pengitlakannya ditunjukkan sebagai kesimpulan mudah bagi
sesuatu ketaksamaan spektral.

(Rearrangement/spectral inequality, z -tuples)

INTRODUCTION

In Ref. [1], the Bernoulli inequality

(1+x)" 21+nx (1)

for x > —1 and integer > 1, is proved by means of
mathematical induct{on. In Ref: [2], a whole chapter is
devoted to Bernoulli’s inequality and its ramifications.
In this paper, we show that Bernoulli’s inequality turns
out to be a rearrangement inequality which can be ob-
tained as a simple consequence of a spectral inequality.

.PRELIMINARIES

Let R" denote the set of all n-tuples of real numbers.
For any n-tuple x = (x,, x,,...,x,) € R", we denote
by x* =(X, %, ,... ,x:) the 7 -tuple whose compo-
nents are those of x arranged in non-increasing order
of magnitude. If a=(q,,q,,...,a4,)€ R" and
b =(b,,b,,... b)) e R", then we say that the weak
spectral inequality 3 <<bh holds whenever

1<k<n (2)

k k
Z'a; < 2 b,.',
i=1

i=1

and that the strong spectral inequality 3 <'b holds

whenever g <<p and 2 a, = Z b,.
i=1 i=1

SOME SPECTRAL INEQUALITIES

The following theorem gives a simple spectral inequal-
ity from which the Bernoulli inequality can be derived
as a rearrangement inequality. We note that this spec-
tral inequality is well-known (see for example, [3], Lem-
ma 3.4 where the result is given in its most general form
for measurable functions). For our purpose here, we
restate and reprove it in its simplest form for n-dimen-

sional real vectors.

1. THEOREM

Suppose thata = (a,,a,,...,a,) € R" is any n-tuple.
If g is the p -tuple whose components are each equal to

1 n
; g, a,;, then

a<a- (3)

PROOF. Since g, > a, >...2 a, 2...2 a, , we have

k

n n _k n .
Zai'sZa;=(n-—k)a;=n—(ka:)_<_[——1 a,

i=k+1 i=k+l k i=1

implying that

or

k(lia,-]sia: for 1<k <n.

N



But

b
=

and so the strong spectral inequality (3) holds.

2. COROLLARY ~ :
If x>-1 and n is a positive integer, then the following
strong spectral inequality holds:

(A+x1+x,K. . +x)<A+nx,11,...,1) @
where both sides are n -tuples from R".
PROOE. This is a direct consequence of Theorem 1.

The above corollary can be generalized along the fol-
lowing direction.

3. THEOREM
If each of the real numbers x,,x,, ..., x_is greater than
-1 and either all are positive or all are negative, then

A4x,,enldx) < (Lbxt4x,1,..,1)  (5)

where both §'i(j_es are n -tuples.

PROQOF. The proof is straightforward upon consider-
ing separately the two cases as mentioned in the theo-
rem.

In order to derive the Bernoulli inequality (1), we need
to invoke the following theorem.

4. THEOREM.
If a=(,a,,..a ) and b=(b,b,,....b,) are.n-
tuples of positive real numbers such that a <'b, then

with strict inequality unless a is a permutation of b.

PROOF. Since the function -In is strictly convex, by
[1, Theorem 2.1, p. 1327], we have

-Ina-lna,-..-Ina,<-In b-1nb-1nb,- ...-In b,

whence the result follows by virtue of the fact that the |

function In is strictly increasing.

It is now easy to derive Bernoulli’s inequality (1) (in :

view of Corollary 2) and also its generalization

(I4x) ... (I+x) > T+x+ ... +x, T

for x, >0 or 0>x,>-1,i=1,2, ..., n, by virtue of

Theorem 3.
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Region estimates based on local linearization in a nonlinear model
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ABSTRACT This paper is concerned with region estimates based
on local linearization for the parameter vector in a nonlinear model.
The quadratic approximation of the coverage probability of the re-
gion estimates is derived. The coverage probability thus derived
may be used to identify the situation when region estimates have
approximately the desired level of confidence.

ABSTRAK Kertas ini adalah berkenaan dengan anggaran ran-
tau berdasarkan pelinearan tempatan bagi vektor parameter dalam
model tak linear. Penghampiran kuadratik bagi kebarangkalian li-
putan untuk anggaran rantau diterbitkan. Kebarangkalian liputan
tersebut boleh digunakan untuk mencamkan situasi bila anggaran
rantau hampir-hampir mempunyai aras keyakinan yang dikehendaki.

(region estimates, local linearization)

INTRODUCTION

Consider a nonlinear regression model given by

(1.1)

y,=nE,.0) +¢,, u=12,....n
where y_ is the u-th observation with mean 7(§, ,6)
and random error €, &u is a vector of known varia-
bles 8 is a (px 1) vector of unknown parameters be-
longing to a parameter space () which is a subset of the
p dimensional Euclidean space. The function 77(§, ,0)
is sometimes referred to as response function and it is a
known, scalar-valued function. Furthermore,
€,,€,,...,€, are assumed to be identical, independent
and normally distributed with zero mean and error var-
iance 42.

Letn(©) = (n(&,.0) (€, 8) ... n(E,.0) ) -The

solution locus is then' a subset of an n dimensional Eu-
clidean space given by

@ :6e Q}

Let y denote a column vector of which the i-th com-
ponent is y, . For a given vector y of observations, the

least squares estimate ¢ of 6 is then the value of 6
which minimizes the residual sum of squares

n 2
S(0) = Z (3, -n(,.9) . (1.2)

Various methods have been proposed for construct-
ing confidence regions for the parameter vector 6 in
the nonlinear regression model given by (1.1). One of
the common methods is that based on likelihood ratio
[1-5]. Another method is one which treats the model as
if it were linear in the parameterization 6 in the neigh-

“bourhood of the least squares estimate g, and applies
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the usual linear model theory. The latter method shall
be referred to as the method based on local lineariza-
tion.

In Refs. [1, 6, 7], measures of nonlinearity were pro-
posed for identifying the situation when an inference
based on local linearization is applicable. In Ref. [8]
Beale’s measures of nonlinearity have been investigat-
ed. In Ref. [9] simulation has been used to obtain the
coverage probability of the confidence regions based
on local linearization and found that cases when the
coverage probability deviates a lot from the desired
value appear to be reliably predicted by Bates and Watts’
parameter effects curvature diagnostic.

A natural way of finding out the cases when the cov-
erage probability is close to the desired value is by look-
ing at the value of the coverage probability directly. In
Section 2 of this paper, we derive a quadratic approxi-
mation of the coverage probability of the region esti-
mates based on local linearization in a nonlinear model
with known error variance. Corresponding result in a
model with unknown error variance is derived in Sec-
tion 3. In Section 4, we verify the result in Section 3 in
some nonlinear models. '



s

CONFIDENCE REGIONS IN THE CASE WHEN
THE ERROR VARIANCE IS KNOWN

As we know, when the theoretical means 1n(§, ,0) are
linear functions of the parameter vector 6, the regres-
sion model is linear and it can be written as follows

y=X0 +¢

where X is an (n X p) matrix of constants. If the error

variance 42 is known, then the 100(1-a) % confi-
dence regions for 8, based on the usual theory in linear
models, are of the following form

. N\ o1 A 2 2
{e. (e-e) X X(G-G) <o'x),)

where Y f,@ is defined as the 100(1— ) percentage

point of a chi-square distribution with p degrees of free-
dom.

Let us approximate 77(§, ,0) by the following line-
ar function of 0

where

Then, for a given vector y of observations, we can ob-
tain a confidence region R, (y) for © given by

oo o4 O 07

where C(G) = {Cuj (9)} is the (n X p) matrix of first
order partial derivatives. From now onwards, a matrix
of which the (i, j) entry is 71; shall be denoted by {my }

or M - The regions of the form given by the right hand
side of (2.2) shall be referred to as the nominally-
100(1— ) % confidence regions based on local line-

arization for 0 in the case when o is known.

The actual coverage probability is then the proba- |
bility that these confidence regions will cover the true

value 6, of the parameter vector 8, and it may be treat-
ed as a function of 6, as follows

1,(0,)= P{6, € R (y)6,}.

This actual coverage probability is usually unknown.

However we can attempt to estimate its value. First,

given a feasible value 8, of 6, we obtain the coverage

probability (8 ) evaluated at 6,. We then investi-

gate the extreme values of I, (8 ;) over a certain sub-

set £, of Q which we think would contain 6_. If both -

the minimum and maximum values of /; (8, ) are not

far off from (1— ), then we ma}; refer to the regions

of the form given by (2.2) as approximately-
100(1 - o¢) % confidence regions for 6.

Let us confine our attention to models satisfying the
following conditions

(a) Foreach 0, € Q, there exists § > ( such that

10 -6, 1< & implies that 6 € Q.
(b) 1f1(8,)=N(8,), then 8, = 6,.

(c) The n(&,,0) are functions of 8 with continuous

derivatives up to the third order in €2/

(d) The matrix C(6,) is of rank p for all 0, €Q;.

Supposing condition (c) is valid, then by Taylor’s |

series expansion about 6, n(g, ,8) can be written as

N, .6)=11(§",9/,)+2l cyt; +t7C,,t+j2l [E'C tl; +0(®), u=12,...,n
i= = i

where

r .. 1 ’
o _ 1 9"n (&, .0) | —123
t 9 e/ ) C;d,],mjm m!‘-aej‘agli'“aej’ » J , m y&rydy

and t denotes the magnitude of t.
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We introduce an orthogonal (nX n) matrix H such
that HC is an upper triangular (p X p) matrix D with
an (n— p) X p) zero matrix beneath it [10,11]. An
orthogonal transformation

H(y-n(8,)) =z 2.3)

of coordinates in sample space is then applied so that
the point (0 7 ) in the solution locus becomes the new
origin z = 0 and the tangent plane to the solution locus
at M) consists of all points for which
7z, =0fori=p+1,p+2,...,n. The components of
z shall be referred to as the rotated coordinates of the
sample point y. Subsequently for a point 1(6) in the
solution locus, its i-th rotated coordinate Zi* can be ex-
pressed in the following form

i=12,....p

J= =t

!2 d,t,+t'D t+ 2 [t'D e, +0(t%),
Z

l ’D,.t+i[tTD,7t]tl.+o(t’), i=p+lp+2,..,n

=1

(2.4)

where d; anddy, are the i-th components of
Hc ;, and He ;; respectively, while C}k and €, are
(nX1) column vectors in which the u-th components

are ¢, and €, respectively. Equation (2.4) can next
be transformed into

[
T, +1 F1+ 2 [t"F,tlt, +o(r’), i=12,..,p

Z: - j=1
l’CTFi’C+2 [T"F1k, +o(1?), i=p+lL,p+2,..,n
(2.5)
where
1=Dt, F,=D")'D,D", with D' = {4’}

and F, =D’ {2 d"D, }D“

Equation (2.5) can further be expressed as follows
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i=12,...,p

j¢.-,
7' =

: l¢’A,-¢+2 (67A;01¢; +0(¢*), i=p+1,p+2,...n
j=

where

o, =1, +1TF,.1+§ [t"F;1kt; +o(r?)

A =F, and A; =F; _zgfﬁ"F

The residual sum of squares S(6) can now be ex-
pressed in terms' of ¢. By minimizing S(0) with re-
spect to ¢, we can find an approximation of the least

squares estimate (?,v of the parameter ¢, [1]. We can

next obtain the least squares estimate ;w of ¢ interms

of z as follows
i ayuz,- 23 a2z,

eSS a2 S
+4 i 2 iiawam 22,2, =2 i iiiaﬂ

a,2,2,2,
i=p+lh=p+l j=) k=1 i=p+1 j=1 k=1 I=1
n n
+3 z ﬁiaﬁvlzizjzl -4 2 iiiaaamznz,‘zk
i=pH1 j=1 1=1 h=ptl j=l k=1 =}
p P P -]
3
—Zzzawz,zkz,ro(z ) w=12,...,p.
J=1 k=1 I=1
‘ 2.6)

Since H is an orthogonal matrix, the matrix

T
[C(O)] [C(G):l appearing in (2.2) can also be writ-
ten as |: A :l
/\ b= |: é

A ] A LD A A a2 )
dy=d, +2Y d, tk+322d,./.k,tkt1+o[t ) i=12,...,m; j=12,...,p.
k=1

k=1 I=1

[ } with the (i, j) entry of

} given by

2N




From (2.6) and (2.7), we see that the gu can now be

expressed as functions of Z. In addition, a confidence
region given by (2.2) can also be written in the follow-
ing form

AN AT A A 2 2
{e: (t—t) b D(t—t)sc x,,,a} @9

in which both /t\ and f) are functions of z.

It is noted that a region given by (2.8) will cover the
parameter vector 6, if and only if

t D Dt<o'y’ 2.9)

By substituting each expression of gu and ;j in

terms of z into (2.9), we can express the inequality in
terms of z. The resulting inequality may then be ap-
proximated by the following inequality

i Y AP N CH AN Y (2.10)

i=1
N
k)

where z, = z; Jo,i=12,...,n, ais a vector whose
components are the ;O and fij,dO'2 where
i=12,....n jk,J0=12,...,p, J S k < I, whereas vy,

v, is a function that sums up a finite number of ex-
pressions, each of which is of the form

constant X7, X7, X0, m=12,

where T, represents the product of some components

M ’
inz’ and T, represents an &, , fia OF Qe Gy -
(S) }1/2

i

Now let Zi, = {z

where

-1 if 7/ <0

1 if 20,
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and apply the transformation

z'(s)

(s) (s) —(s) _ S P —

0230, 7 -5, i=12,..,p-1
=

Then to the extent that the approximation given by (2.10)
is adequate, we can express the coverage probability

1,(6 f ) as follows

Il(ef):'Ez;,,,z’p,zl“.z; Z Z K Z

s=L15=-11 sp=-11

1 1

J n=ov[§n=2:n ..
e -2 £ o g .
2p HXI i 1 P ] x:(l) p-1%&p-2 1

(2.11)

[ .0
« g ek

where K: is the set containing the values of () which

satisfy

© ¢ a2 (=14 (=% = 1%
- A A AT LAY BRI SPPPUNN LaeZo) OF

(s) = (s) y2

5. = ’ ’ ’

AL 1=22" |t s Zpr Gy o0 %2 B
i=1

and

(2.12)

s 1 5 \k/2)-1 s
2: ) =W2‘(r( N exp(-r 12).

So far we have been treating the a,, and f;,, as con-
stants. Now if we imagine that they are variables and
keep Gf and o fixed, then Il((-)f) can be treated as a func-

) + . .

tion of the a;.k and f, given respectively by ;0
2 . . \ .

and f O _ A truncated series expansion of I (9 f) is

then given by

(
L(e,)=1-a+1" +1% (2.13)

li

tl



2.10)
bility

W

2.11)

vhich

(5 1%
1,

2.12)

12).

} con-

func-

2.13)

. . + .
where IV is a linear combination of the Ay and I?is a

+ . .
linear combination of the auk . plus a linear combi-

nation of the f;k,.

The expansion in (2.13) is truncated in such a way
that for a specific model and a given value of 0 7» the
right hand side of (2.13) is a quadratic function of &.

When the magnitude of a is sufficiently small, the

set K: can be written as

K* ={rl(s): 0< r(s) <

1 (2.14)

(s)*
n
satisfies (2.12) with the inequality sign

changed to rl(s) "

where rf” ’

changed to the equal sign and rl(s)
With K: taking the form as shown in (2.14), the

partial derivatives of I, (9 f) given by (2.11) can be

obtained by applying the Leibnitz’s rule for differentia-
tion under the integral sign. :

In deriving 'V and I which appear in (2.13), we may
make use of the following result

“E, ) 6

2(m,+mz)/zr(m2 +1)r(p+ m, J
— 2 2 2

= Xoon (Xow)
p
(2]

my,m,

ie{p+Lp+2,..,n},m €Z', andm, €{0,2,4,6,...}.
In the present case when 4?2 is known and p 22,

the quadratic approximation of the coverage probabili-
ty of the region estimates can be shown to be given as
follows :
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Il(ej)zl—ozuucr2

{8[ p+2)8, +2542]z Z iauk +126,, 2 Zaw

(p+2)

i=p+l j=1 k=j+] i=p+l j=1
[ p+2) 522_8”]2 z i Qy -mm}
i=pHl j=1 m=j+1
where
1, =———{3[8(p+4)3,, 5560]2a 356022a
(p+4)(p+2 i=l j=1

i

L& & 2
455022 Za"
l)-lk-[#l

uuuuu

"4[4(/7 +4)64,u - 35640]£iai217 -

il =t
wa

+2[4(p+4)8

35”]22a 4 +4[4 p+4)d,, 3550]22“-»“-"

|,| -1,.1

)
5”]222‘1 a"l+4[2 p+4)8 40 5”]222“;“;,..,.

-ll-+l;l

+8[(p+4

iml jul mul
w2y
i

+4[8(p+4)54}0 36, ]ZZa.ua... 25602‘,21 iaﬂamI

i=l j‘l il /:1 m=j4+l
......

+§[3(p+4)8,, 560]222%% ~12(p+4)5 4oiﬁf...,

iml juitl k-l inl jul

n.

CONFIDENCE REGIONS IN THE CASE WHEN
THE ERROR VARIANCE IS UNKNOWN

In Section 2, the error variance 0-2 1s assumed to be
known. In this section we shall consider the case when
o is unknown.

Suppose n(&u,e) is approximated by the linear

function of 0 given by (2.1). Then, for the given vector
y of observations, we can obtain a confidence region
R(y) for 0 given by

Fp,n-p,a

w4/ o o-9 2%

“(3.1)




where F,, . is the 100(1— ) percentage point of
an F- distribution with p and (n-p) degrees of freedom.
The regions of the form given by the right hand side of
(3.1) shall be referred to as the nominally - 100(1 — &) %

confidence regions based on local linearization for 6 in
the case when ¢ is unknown.

The probability that the confidence regions of the
form given by (3.1) will cover the true value 0, of the
parameter vector 6 is a value of interest to us. This
probability may be treated as a function of 6, and the
true value o, of o, as follows

Iz(er’ GT) = P{er € Rz(y)‘er’ GT}

Though this actual coverage probability is usually un-
known, we can attempt to estimate its value. First, giv-
en a feasible value 6, of 0, and a value of o, we

obtain the coverage probability 1, (9 iy ) evaluated

at o ’ and 6. We then investigate the extreme values of

I, (9 »o ) over a certain subset Qf of Q which we

think would contain 6, and an interval (0,0'f) which
we think wpuld cover O, . If both the minimum and

R

maximum \;iilges of I, (9 7 O') are not far off from

(1— o), then we may refer to the regions of the form

given by (3.1) as approximately - 100(1 — o) % confi-
dence regions for 8 when & 2 is unknown.

Following the same procedure as described in Sec-
tion 2, we can express the confidence region R, (y) in
the following form

R,(y)= {e . (0-6) B'D(0-6) Sd"‘zs(é)}

d”?

p.n-p,o°

_ P
where - F
n-p

The confidence region given by (3.1) will cover 8, if
and only if

D Di< d*zs(é). 3.2)
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The minimum residual sum of squares S(é) can be

expressed as a quartic function of z[1]. By substituting

the expressions of fw, d,.j and S(B) in terms of z into’

the inequality in (3.2), we can obtain an inequality in
terms of z. This inequality can then be approximated
by an inequality of the following form

izf <d” iz,'-z +y,(2 7 0za) 33 |
i=1 |

Jj=p+l
where V, is a function similar to y; in (2.10).
Using a procedure similar to that in Section 2, we '

can derive from (3.3) a truncated series expansion of

1,(8,,0) similar to that for 1,(6,) [cf. (2.13)].

The following result may be used in deriving the
truncated series expansion ;

Boms =By cltneld™ ™) )"

2(,,;,,,,,,2),2 F[mz +1)F£ml +m, +n—2](d,,2)(mp~,,_2),2 ,
2 2

ZN/;C_F(EJF[M)(I +d” )(m. +my +n-2)2
2 2 .

where

m, €{0,2,4,6,...xm, >3-m,-nje{p+Lp+2...n}

d+2 zd*Z 2’,:2;2.

j=p+l

and

For a specific model and a given value of 6, , the
coverage probability of the region estimates may be
treated as a function of o. The quadratic approxima-
tion of the coverage probability, treated as a function of
o, can be shown to be
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m+p-2)2
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)Xima-
tion of

proximation. This figure shows that quadratic approx-
L(e,0)=1-a+1,0’ - N
: imation is excellent when |a222|SO. 027. When

{4[(p+2)(d“ +2d” —2)[312 +d'zﬁ‘,y0 —(2 +d'2)2ﬁ“]i E zp"a;k

2

+ +

(p+2)p iepHt el ket a,,,|>0.027, deviation from the exact value begins
2 LI . . oo
+[(p'+2)d'1(8+3d'2)ﬁu +3d"B,,~3(2+d”) /34,2] > Xa, to be discernible.
impti j=i
2 2 LI o S
+2[(p+2)(2+dq‘) ﬁz‘z +d'2ﬁ4,0 _(2 +d.2) p4,2] z 2 Zaijjaimm} o? unknown, «=0.05, sf =0)
izp+l j=1 mej+l 095024 ~ ~
0.95022 -
0.85020 -
where I, isderived from [, by replacing all the 5,.,0 055018 -|
. g 0.95016 ~
m 111 by ﬁi,O : E 0.85014 —
& 0.25012
§ 0.85010 /
VERIFICATION OF RESULTS 8 .95008 -
0.95006 -
. . . . 0.95004 —
Consider a simple nonlinear model given by 058002 -
0.95000 T T T T T T T T
2 0.00 0.01 0.02 0.03 0.04
yl = _61 + 81 ] y2 = —02 - a222 02 + 82: y3 = 83 (4'1) o quad. approx. i 3;22 + exact

which has three observations, two parameters and only - Figure 1. Coverage probability versus a;,, for the simple nonline-
one nonlinear term 4,,,. Suppose that 0-2 is unknown, ar model: y, =-0, +¢,, y,=-6, - amez +E, ¥, =€,

6_/. =0and ¢ =0.05. An orthogonal transformation

of the type as given in (2.3) will transform the model For a vector a in which the componenta* is nonzero

iven in (4.1) to the followi
& @1 Howing while all the other components are zero, let Rq . be

. an interval containing all the values of @ * such that

’ ’ ’
z, —tx +8|, 2, +a222t2 +£2’ 3, =8,

lexact c.p. - quadratic c.p)|

where s’.' is the i-th component of ¢’ = He - x100% < q%

lexact c.p. - (1-¢) “+2)
For a given value of a;z € (—0.05,0.05), we ob- P
tain the coverage probability of the confidence regions

for @ by integrating a triple integral numerically. In where c.p. stands for coverage probability evaluated at

. . . 6.=0 i iti =
performing the integration, the values of Z, /0 are f and g is some positive real number. For ¢

restricted to lie in the interval (-5,5). The first reason  1,3,5, the corresponding intervals Rq ,+ for a = a2+22
for such a restriction is that the probability that the ab- ’

solute value of a standardised normal variable will be
greater than 5 is about 5.7 x 107 which is too small to
have a significant effect on the final result of the inte-

are shown in Table 1.
Results for other two-parameter models with n=3,

o unknown and only one nonlinear term @;; and f ikl

are shown in Tables 1 and 2.

ration. The second is that 7 will I- .
g reason is that 7, will then be.a Table 1 shows that among the three types of nonlin-

ways unique. In Fig. 1 we present a graph of the exact ) b N .+
coverage probability obtained by numerical integration ~ ©ar terms given by {am, a1 } {auz’ am} and {am, am},
and the coverage probability obtained by quadratic ap- the first type will have to assume a much larger abso-
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Table 1.
Upper limit (xl()_z) of the interval R , when a=0.05
. g4

(lower limit = -upper limit)

q 1 3 5
ot
Y 14.21 21.92 30.00
Gyy0 Oy 4.42 6.90 9.64
a5y 8y | 2.33 3.38 428
Frow Fom 0.12 0.26 0.47
Table 2.

Upper limit (xlo'z) of the interval R , when & =0.05
q.a

(lower limit = -upper limit)

q 5 10 15

a+
Ay oy, 0.426 0.579 0.712
ay, 0.470 0.611 0.759

lute value in Brj\der to produce the same degree of inad-
equacy of quadratic approximation as given by the left
side of (4.2). Table 2 shows that when the two types of
nonlinear terms given by {a;n, a;l} and a;z have
the same absolute value, they give rise to about the same
degree of inadequacy of quadratic approximation. The
two tables also show that the a;jk terms need to as-

sume only a very much smaller absolute value in com-

. . + +
parison with @, Or d,; In order to produce the same

adverse effect on the adequacy of quadratic approxi-
mation. We suspect that similar sort of results might
also be true for two-parameter models with n > 3 ob-
servations.

Now consider a quadratic model with n=3 and the

values of the fy; andfy, as given in the appendix.

Assuming that 5> is unknown, and choosing 6 = 0

and ¢ = 0.05, we obtain the coverage probability of
the confidence regions for @ by numerical integration
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for a number of small values of ¢. In Table 3, the
coverage probabilities obtained by numerical integra-
tion and quadratic approximation are presented. The
table shows that for ¢ <0.05, the probabilities based
on quadratic approximation agree fairly well with the
exact values obtained by numerical integration.

Table 3. Coverage probability of the region estimates in the quad-
ratic model. '

Coverage Probability -0.95
o | Quadratic Approximation (x10%) | Numerical Integration x109%)
0.01 0.664 0.665
0.02 2.658 2.664
0.03 5.980 6.009
0.04 10.631 10.721
0.05 16.611 16.823
Next consider the exponential

y, =06, exp{—éuez} +¢€,u=12,3, with
¢ = -0.2692635, &, =—0. 3987761, &, = —0.4768550.
Suppose that ¢ is unknown, 0 ; = (0.7689,3.8600)T

model

and ¢ =0.05. We obtain the coverage probabilities

of the confidence regions for § by numerical integra- -

tion for a number of values of ¢. InTable 4, the cov-
erage probabilities obtained by numerical integration
and quadratic approximation are presented. This table
shows that for ¢ <0.03, the probabilities based on

quadratic approximation differ very slightly from the |

exact values obtained by numerical integration.

Table 4. Coverage probability of the region estimates in the expo-
nential model.

Coverage Probability -0.95
o | Quadratic Approximation (x10%) | Numerical Integration (x10%)
0.005 ~-0.560 -0.599
0.010 -2.242 -2.240
0.015 -5.043 -5.037
0.020 -8.966 -8.947
0.025 -14.010 -13.964
0.030 -20.174 -20.059

Finally, consider the model
1

Y=
61§u1 + 62€u2 + 935143

+e,, u=1234




}, the
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The
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:quad-
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3 cov-
ration
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€ expo-
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3,4

in which the inverse of the theoretical mean is a linear

function. Let r’,‘uj be given by

¥

j
u 1 2 3
1 80.06 18.91 1.00
2 74.99 22.99 2.00
3 69.99 27.99 2.00
4 64.99 31.99 3.00

Suppose that 5 isunknown, 8, =(0.015,0.045, 0.5)"

and ¢ =0.05. InTable 5, the coverage probabilities
obtained by numerical integration and quadratic approx-
imation are presented. This table shows that for the
values of o considered the probabilities based on quad-
ratic approximation are in good agreement with the ex-

act values obtained by numerical integration.

Appendix

The values of f, and f,, used in Section 4.

Table 5. Coverage probability of the region estimates in the mod-
el in which the inverse of the theoretical mean is a linear function.

ol (XIO'S) Quadratic Approximation (x10”)|Numerical Integration (x107)

Coverage Probability -0.95

O 001 N H WK~

1.0 -4.704 -4.704

11 -5.687 -5.691

12 -6.963 6.773
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i j k 1 " £ i j k 1 £y o

1 1 1 1 0.04 0.0042 2 1 2 2 0.090  0.00360
1 1 1 2 0.0040 2 2 2 2 0.040  0.00430
1 1 2 2 0.08 0.0037 3 1 1 1 0.008  0.00020
1 2 2 2 0.30 0.0041 3 1 1 2 0.00010
2 1 1 1 030 0.0038 3 1 2 2 0.007  0.00015
2 1 1 2 0.0042 3 2 2 2 0.008  0.00030
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